Provenance: An Introduction to PROV

Luc Moreau & Paul Groth & Trung Dong Huynh
Acknowledgements

ORCHID

SOCIAM

Smart Society

COMMIT/

Open PHACTS
Open Pharmacological Space
Outline

• Notion of Provenance
• Examples of Provenance
• W3C Provenance Working Group
• PROV
• Provenance Recipes
• Tools / Management
• Summary
• Hands-on
References

PROV Model Primer
W3C Working Group Note 30 April 2013

PROV-O: The PROV Ontology

PROV-DM: The PROV Data Model
W3C Recommendation 30 April 2013

This version:
http://www.w3.org/TR/2013/REC-prov-dm-20130430/

Latest published version:
http://www.w3.org/TR/prov-dm/

Implementation report:
http://www.w3.org/TR/2013/NOTE-prov-impl-20130430/

Previous version:
http://www.w3.org/TR/2013/PR-prov-dm-20130312/ (color-coded)

Editors:
Luc Moreau, University of Southampton
Paolo Missier, Newcastle University

Contributors:
Luc Moreau, University of Southampton
Paolo Missier, Newcastle University
Open Data and Journalism

• Data journalism ethos: to expose the data and methods used to produce news items
• Data wrangling can introduce errors, data journalists should care about the validity of data; provenance of data should include its primary source, but also all the transformational steps performed by anyone.

http://datadrivenjournalism.net/featured_projects/how_spendings_stories_spots_errors_in_public_spending
Tracing Information in the Social Web

• In the Social Web, users are given the ability to select contents from across the Web, integrate it together, edit it, rate it, publish it and share it with others.

• There is a consume-select-curate-share workflow similar to the data wrangling performed by data journalists, but typically require little technical expertise.

• “Good curation demands good provenance. Provenance is no longer merely the nicety of artists, academics, and wine makers. It is an ethic we expect.”

Reproducibility of Science

• Science is becoming computation and data intensive, but the fundamental tenet of the scientific method remains unchanged: experimental results need to be reproducible.

• Provenance is the equivalent of a logbook
 • capturing all the steps involved in the derivation of a result,
 • could be used to replay the execution that led to that result so as to validate it.
Accountability, Transparency, Compliance in Business Applications

• Steve New refers to the provenance of a company’s products, and explains how businesses have changed their practice to make their supply chain transparent, because they worry about quality, safety, ethics, and environmental impact.

• Governments increasingly request transparency and provenance information in the area of anti-corruption compliance.

• Weitzner notes: provenance is a substrate that can be used to perform policy checks and to make systems accountable.

http://hbr.org/2010/10/the-transparent-supply-chain/ar/1
Provenance Definition

• Oxford English Dictionary:
 – the fact of coming from some particular source or quarter; origin, derivation
 – the history or pedigree of a work of art, manuscript, rare book, etc.;
 – concretely, a record of the passage of an item through its various owners.
Provenance Definition (2)

• Provenance is a record that describes the people, institutions, entities, and activities, involved in producing, influencing, or delivering a piece of data or a thing in the world.

• Provenance is crucial in deciding:
 – whether information is to be trusted,
 – how it should be integrated with other sources, and
 – how to give credit to its originators when reusing it.

• Provenance can help users to make trust judgments.
Provenance on the Web

Tim Berners-Lee’s “Oh Yeah” button:

• A browser button by which the user can express their uncertainty about a document being displayed “so how do I know I can trust this information?”.

• Upon activation of the button, the software then retrieves metadata about the document, listing assumptions on which trust can be based.
Provenance in the Semantic Web Stack
EXAMPLE: DATA JOURNALISM
NowNews Publishing

- NowNews publishes an article based on the latest employment data published by GovStat
- PolicyOrg compiles a report including NowNews article
Provenance Use Cases

• Quality Assessment
 – The latest data – timeliness
 – Finding trusted articles
 – Finding flawed figures

• Compliance
 – Following policy
 – Licensing

• Cataloging
 – Building an Index
 – Acknowledgements

• Replay
 – Reproducibility
 – Publication Embargo
Use Case: The latest data - timeliness

• PolicyOrg is about to issue their report publicly, before releasing the report they want to confirm that the report is based on the most up-to-date data.

• One of the figures that they have reused in the report stems from Bob’s article on employment that appeared in NowNews.

• PolicyOrg needs to run a check that ascertains which data that figure was based upon.
Use Case: Finding trusted articles

• When putting together a story or a report, content creators want to find information that is based on trusted sources.
• PolicyOrg may want to search for articles based on trusted sources information.
• PolicyOrg views data supplied by the government as reliable.
• However, when searching for content it is not always clear whether a content source is derived from data coming from such a reliable source.
Attribution

nowpeople: Bob

prov:wasAttributedTo

now:
employment-article-v1.html

agent
activity
entity
Derivation

nowpeople: Bob

prov:wasAttributedTo

prov:wasDerivedFrom

now: employment-article-v1.html

govftp:oesm11st.zip
Derivation Chain

```
nowpeople: Bob

prov:wasAttributedTo

prov:wasDerivedFrom

now: employment-article-v1.html

prov:wasDerivedFrom

pol:report1

prov:wasDerivedFrom

govftp:oesm11st.zip
```
Activity: Writing Article

nowpeople: Bob

govftp:oesm11st.zip

prov:wasAttributeTo

prov:wasDerivedFrom

prov:used

is: writeArticle

now: employment-article-v1.html
Activity Start and End Times

nowpeople: Bob

govftp:oesm11st.zip

prov:wasAttributedTo

prov:wasDerivedFrom

prov:used

is: writeArticle

prov:startedAtTime
09:00 EST

prov:endedAtTime
10:00 EST

now: employment-article-v1.html

prov:wasGeneratedBy
W3C PROVENANCE WORKING GROUP
Provenance Interchange Working Group Charter

The mission of the Provenance Working Group, part of the Semantic Web Activity, is to support the widespread publication and use of provenance information of Web documents, data, and resources. The Working Group will publish W3C Recommendations that define a language for exchanging provenance information among applications.

Join the Provenance Working Group.

<table>
<thead>
<tr>
<th>End date</th>
<th>1 October 2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confidentiality</td>
<td>Proceedings are public</td>
</tr>
</tbody>
</table>
| Initial Chairs | Luc Moreau, University of Southampton
 | Paul Groth, VU University Amsterdam |
| Initial Team Contacts | Sandro Hawke |
| (FTE %: 20) | Teleconferences: Weekly |
| | Face-to-face: Once Annually |
PROV Family of Specifications

PROV-Primer

PROV-DC
PROV-O
PROV-XML
PROV-N
PROV-DICTONARY
PROV-LINKS
PROV-SEM

PROV-AQ

PROV-DM
PROV-CONSTRAINTS

PROV-IMPLEMENTATIONS
PROV-OVERVIEW
PROV
Three Core Classes

An entity is a physical, digital, conceptual, or other kind of thing with some fixed aspects; entities may be real or imaginary.

An activity is something that occurs over a period of time and acts upon or with entities; it may include consuming, processing, transforming, modifying, relocating, using, or generating entities.

An agent is something that bears some form of responsibility for an activity taking place, for the existence of an entity, or for another agent’s activity.
Three Views of Provenance
UML View of PROV Core
Component Structure for PROV

C1: Entities/Activities

C2: Derivations

C3: Agents, Responsibility, Influence

C4: Bundles

C5: Alternate

C6: Collections
Core vs Extended

Responsibility View
Data Flow View
Process View

C1: Entities
C2: Derivations
C3: Agents, Responsibility, Influence

C4: Bundles
C5: Alternate
C6: Collections

Core
Extended
Component 1: Entities and Activities
Component 2: Derivation
Component 3: Agents, Responsibility...

Classes and associations within this area belong to PROV core
Component 3: ... and Influence
Component 4: Bundles

• A Bundle is a named set of provenance assertions
• A Bundle is also an entity
• Its provenance can be expressed with PROV
Component 5: Alternate Views
Component 6: Collections
Beyond Binary Relations

In UML, Association Classes are introduced to express n-ary relations.
Directed Qualified Pattern

- A convention to express n-ary relations in RDF
- Flows in the same direction as the unqualified binary relation
- Introduces an explicit resource from which extra information can be hooked
A derivation is a transformation of an entity into another, an update of an entity resulting in a new one, or the construction of a new entity based on a pre-existing entity.

Unqualified

:e2 a prov:Entity.
:e1 a prov:Entity.
:e2 prov:wasDerivedFrom :e1.

Qualified

:d a prov:Derivation.
:e2 prov:qualifiedDerivation :d.

<table>
<thead>
<tr>
<th>Class</th>
<th>Parent</th>
</tr>
</thead>
<tbody>
<tr>
<td>prov:Derivation</td>
<td>prov:Influence</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Property</th>
<th>Domain</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>prov:wasDerivedFrom</td>
<td>prov:Entity</td>
<td>prov:Entity</td>
</tr>
<tr>
<td>prov:qualifiedDerivation</td>
<td>prov:Entity</td>
<td>prov:Derivation</td>
</tr>
<tr>
<td>prov:entity</td>
<td>prov:Influence</td>
<td>prov:Entity</td>
</tr>
</tbody>
</table>
Derivation

document
prefix ex <http://example/>
entity(ex:e1)
entity(ex:e2)
wasDerivedFrom(ex:e2, ex:e1)
endDocument

@prefix prov: <http://www.w3.org/ns/prov#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix ex: <http://example/> .

ex:e1 a prov:Entity .
ex:e2 a prov:Entity ;
prov:wasDerivedFrom ex:e1 .
Generation

Generation is the completion of production of a new entity by an activity. This entity did not exist before generation and becomes available for usage after this generation.

Unqualified

:e a prov:Entity.
:a a prov:Activity.
:e prov:wasGeneratedBy :a.

Qualified

:g a prov:Generation.
:e prov:qualifiedGeneration :g.
:g prov:activity :a.
:g prov:atTime "2012-04-01T12:01:01"^^xsd:dateTime.

<table>
<thead>
<tr>
<th>Class</th>
<th>Parent</th>
</tr>
</thead>
<tbody>
<tr>
<td>prov:Generation</td>
<td>prov:ActivityInfluence, prov:InstataneousEvent</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Property</th>
<th>Domain</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>prov:wasGeneratedBy</td>
<td>prov:Entity</td>
<td>prov:Activity</td>
</tr>
<tr>
<td>prov:qualifiedGeneration</td>
<td>prov:Entity</td>
<td>prov:Generation</td>
</tr>
<tr>
<td>prov:activity</td>
<td>prov:ActivityInfluence</td>
<td>prov:Activity</td>
</tr>
<tr>
<td>prov:atTime</td>
<td>prov:InstantaneousEvent</td>
<td>xsd:dateTime</td>
</tr>
</tbody>
</table>
Generation

document
prefix ex <http://example/>
entity(ex:e2)
activity(ex:a1)
wasGeneratedBy(ex:e2, ex:a1)
endDocument

@prefix prov: <http://www.w3.org/ns/prov#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix ex: <http://example/> .

ex:e2 a prov:Entity .
ex:a1 a prov:Activity .
ex:e2 prov:wasGeneratedBy ex:a1 .
Usage

Usage is the beginning of utilizing an entity by an activity. Before usage, the activity had not begun to utilize this entity and could not have been affected by the entity.

Unqualified

:e a prov:Entity.
:a a prov:Activity.
:a prov:used :e.

Qualified

:u a prov:Usage.
:a prov:qualifiedUsage :u.
:u prov:entity :e.
:u prov:atTime "2012-04-01T12:01:01"
^^xsd:dateTime.

<table>
<thead>
<tr>
<th>Property</th>
<th>Domain</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>prov:used</td>
<td>prov:Activity</td>
<td>prov:Entity</td>
</tr>
<tr>
<td>prov:qualifiedUsage</td>
<td>prov:Activity</td>
<td>prov:Usage</td>
</tr>
<tr>
<td>prov:entity</td>
<td>prov:EntityInfluence</td>
<td>prov:Entity</td>
</tr>
<tr>
<td>prov:atTime</td>
<td>prov:InstantaneousEvent</td>
<td>xsd:dateTime</td>
</tr>
</tbody>
</table>
Invalidation

Invalidation is the start of the destruction, cessation, or expiry of an existing entity by an activity. The entity is no longer available for use (or further invalidation) after invalidation.

Unqualified

e a prov:Entity.
a a prov:Activity.
e prov:wasInvalidatedBy :a.

Qualified

i a prov:Invalidation.
e prov:qualifiedInvalidation :i.
i prov:activity :a.
i prov:atTime "2012-04-01T12:01:01"^^xsd:dateTime.
Start

Start is when an activity is deemed to have been started by an entity, known as trigger. The activity did not exist before its start.

Unqualified

:a2 a prov:Activity.
:e a prov:Entity.
:a2 prov:wasStartedBy :e.

Qualified

:s a prov:Start.
:a2 prov:qualifiedStart :s.
:s prov:entity :e.
:s prov:hadActivity :a1.
:s prov:atTime "2012-04-01T12:01:01"^^xsd:dateTime.
End

End is when an activity is deemed to have been ended by an entity, known as trigger. The activity no longer exists after its end.

Unqualified

:a2 a prov:Activity.
:e a prov:Entity.
:a2 prov:wasEndedBy :e.

Qualified

:end a End.
:a2 prov:qualifiedEnd :end.
:end prov:entity :e.
:end prov:hadActivity :a1.
:end prov:atTime "2012-04-01T12:01:01"^^xsd:dateTime.

<table>
<thead>
<tr>
<th>Class</th>
<th>Parent</th>
</tr>
</thead>
<tbody>
<tr>
<td>prov:End</td>
<td>prov:EntityInfluence, prov:InstantaneousEvent</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Property</th>
<th>Domain</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>prov:wasEndedBy</td>
<td>prov:Activity</td>
<td>prov:Entity</td>
</tr>
<tr>
<td>prov:qualifiedEnd</td>
<td>prov:Activity</td>
<td>prov:End</td>
</tr>
<tr>
<td>prov:entity</td>
<td>prov:EntityInfluence</td>
<td>prov:Entity</td>
</tr>
<tr>
<td>prov:hadActivity</td>
<td>prov:Influence</td>
<td>prov:Activity</td>
</tr>
<tr>
<td>prov:atTime</td>
<td>prov:InstantaneousEvent</td>
<td>xsd:dateTime</td>
</tr>
</tbody>
</table>
Communication

Communication is the exchange of some unspecified entity by two activities, one activity using some entity generated by the other.

Unqualified:
:a2 a prov:Activity.
:a1 a prov:Activity.
:a2 prov:wasInformedBy :a1.

Qualified:
:c a prov:Communication.
:a2
prov:qualifiedCommunication :c.
:c prov:activity :a1
Attribution is the ascribing of an entity to an agent.

Unqualified

```
:e a prov:Entity.
:ag a prov:Agent.
:e prov:wasAttributedTo :ag.
```

Qualified

```
:attr a prov:Attribution.
```
Attribution

document

prefix ex <http://example/>
entity(ex:e2)
agent(ex:ag1)
wasAttributedTo(ex:e2, ex:ag1)
endDocument

{ "wasAttributedTo": {
 "_wAT5": {
 "prov:agent": "ex:ag1",
 "prov:entity": "ex:e2"
 }
}

"entity": {
 "ex:e2": {}
}

"prefix": {
 "xsd": "http://www.w3.org/2001/XMLSchema",
 "prov": "http://www.w3.org/ns/prov#",
 "ex": "http://example/"
}

"agent": {
 "ex:ag1": {}
}
Association

An association is an assignment of responsibility to an agent for an activity, indicating that the agent had a role in the activity. It further allows for a plan to be specified.

Unqualified

:a a prov:Activity.
:ag a prov:Agent.
:a prov:wasAssociatedWith :ag.

Qualified

:pl a prov:Plan.
:assoc prov:hadPlan :pl.

<table>
<thead>
<tr>
<th>Class</th>
<th>Parent</th>
</tr>
</thead>
<tbody>
<tr>
<td>prov:Association</td>
<td>prov:AgentInfluence</td>
</tr>
<tr>
<td>prov:Plan</td>
<td>prov:Entity</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Property</th>
<th>Domain</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>prov:wasAssociatedWith</td>
<td>prov:Activity</td>
<td>prov:Agent</td>
</tr>
<tr>
<td>prov:qualifiedAssociation</td>
<td>prov:Activity</td>
<td>prov:Association</td>
</tr>
<tr>
<td>prov:agent</td>
<td>prov:AgentInfluence</td>
<td>prov:Agent</td>
</tr>
<tr>
<td>prov:hadPlan</td>
<td>prov:Association</td>
<td>prov:Plan</td>
</tr>
</tbody>
</table>
Delegation is the assignment of authority and responsibility to an agent to carry out a specific activity as a delegate or representative.

Unqualified

:ag2 a prov:Agent.
:ag1 a prov:Agent.

Qualified

:del a prov:Delegation.
:a a prov:Activity.
:ag2
 prov:qualifiedDelegation :del.

<table>
<thead>
<tr>
<th>Class</th>
<th>Parent</th>
</tr>
</thead>
<tbody>
<tr>
<td>prov:Delegation</td>
<td>prov:AgentInfluence</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Property</th>
<th>Domain</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>prov:actedOnBehalfOf</td>
<td>prov:Agent</td>
<td>prov:Agent</td>
</tr>
<tr>
<td>prov:qualifiedDelegation</td>
<td>prov:Agent</td>
<td>prov:Delegation</td>
</tr>
<tr>
<td>prov:agent</td>
<td>prov:AgentInfluence</td>
<td>prov:Agent</td>
</tr>
<tr>
<td>prov:hadActivity</td>
<td>prov:Delegation</td>
<td>prov:Activity</td>
</tr>
</tbody>
</table>
Specialization

An entity that is a specialization of another shares all aspects of the latter, and additionally presents more specific aspects of the same thing as the latter.

Property	Domain	Range
prov:specializationOf | prov:Entity | prov:Entity
An entity that is a specialization of another shares all aspects of the latter, and additionally presents more specific aspects of the same thing as the latter.

\[:e2 \text{ prov:alternateOf} :e1. \]
Membership

A collection is an entity that provides a structure to some constituents that must themselves be entities. These constituents are said to be member of the collections.

```
:c a prov:Collection.
:e a prov:Entity.
:c prov:hadMember :e.
```

<table>
<thead>
<tr>
<th>Class</th>
<th>Parent</th>
</tr>
</thead>
<tbody>
<tr>
<td>prov:Collection</td>
<td>prov:Entity</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Property</th>
<th>Domain</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>prov:hadMember</td>
<td>prov:Collection</td>
<td>prov:Entity</td>
</tr>
</tbody>
</table>
Refined Derivation

A derivation is a transformation of an entity into another, an update of an entity resulting in a new one, or the construction of a new entity based on a pre-existing entity.

Unqualified
:e2 a prov:Entity.
:e1 a prov:Entity.
:e2 prov:wasDerivedFrom :e1.

Qualified
:d a prov:Derivation.
:e2 prov:qualifiedDerivation :d.
:d prov:hadGeneration :g.
:e2 prov:hadQualifiedGeneration :g.
:d prov:hadUsage :u.
:a prov:hadQualifiedUsage :u.
A few classes are introduced to provide structure (e.g. InstantaneousEvent)

A few subclasses are introduced for interoperability (e.g. Person)

Developers are invited to extend classes with a blue border (to ensure interoperability)
provbook:a-little-provenance-goes-a-long-way a prov:Entity;
prov:value "A little provenance goes a long way";
prov:wasAttributedTo provbook:Paul, provbook:Luc;
prov:wasDerivedFrom <http://www.cs.rpi.edu/~hendler/LittleSemanticsWeb.html>.
RECIPES
Provenance Recipes

• Modelling
• Organizing
• Collecting
• Anti-Patterns
Modeling

- 1.1 Iterative Modeling
- 1.2 Identify, Identify, Identify!
- 1.3 From data flow to activities
- 1.4 Plan for revisions
- 1.5 Modeling replacement and other destructive activities
- 1.6 Modeling message passing
- 1.7 Modeling parameters
- 1.8 Introduce the execution environment
- 1.9 Modeling sub-activities
1.4 Plan For Revision

How does one express revisions to a resource or document using PROV?

Collect all the revisions of a resource under a single general resource using prov:specializationOf.

• For a resource create an identifier to denote it in general irrespective of its actual version.
 – For example, the BBC news website.
• For each revision of the resource, create a fresh identifier for that resource.
 – For example, the BBC news website on a given day.
• Relate the reversion to the previous one using prov:wasRevisionOf.
• Relate each version to the resource in general using prov:specializationOf.
1.4 Plan For Revision

document
prefix ex <http://example/>
entity(ex:e)
entity(ex:e0)
entity(ex:e1)
entity(ex:e2)
entity(ex:e3)

specializationOf(ex:e0,ex:e)
specializationOf(ex:e1,ex:e)
specializationOf(ex:e2,ex:e)
specializationOf(ex:e3,ex:e)

wasDerivedFrom(ex:e1,ex:e0)
wasDerivedFrom(ex:e2,ex:e1)
wasDerivedFrom(ex:e3,ex:e2)
endDocument
Organizing

• 2.1 Stitch provenance together
• 2.2 Use Content-Negotiation when Exposing Provenance
• 2.3 Bundle up and Provide Attribution to Your Provenance
• 2.4 Embedding Provenance in HTML
• 2.5 Embedding Provenance in other Media
• 2.6 When all else fails, add provenance to http Headers
• 2.7 Embed Provenance in Bundles: Self-Referential Bundles
• 2.8 When displaying provenance, adopt conventional layout
2.2 Use Content-Negotiation When Exposing Provenance

What serialization should I provide provenance in?

PROV was designed to supply provenance in multiple representations catering for different types of development platforms whether they be enterprise XML-based applications or RDF-based Semantic Web applications. Thus, providers should ensure their provenance is useful for a variety of needs by supplying the same provenance data in multiple representations using content-negotiation.

For example, for the provenance located at http://www.provbook.org/provenance, the following lists the curl commands to retrieve 3 different representations of the provenance (namely, turtle, svg, and xml):

- `curl -sH "Accept: image/svg+xml" -L http://www.provbook.org/provenance`

The provenance information corresponding to a particular format can either be generated up-front or produced on the fly. Most web servers and environments support content negotiation.
Collecting

• 3.1 Use structured logs to collect provenance
• 3.2 Collect in a local form, expose as PROV
Anti-patterns

• 4.1 Activity but no Derivation
• 4.2 Association but no Attribution
• 4.3 Don’t identify prov:Agent, identify responsibility properties
4.1 Activity but no Derivation

There are two solutions to this problem.

• One is to introduce explicit derivation edges between entities that are dependent on one another.

• The other is to define an application-specific extension to prov:Activity (e.g. Function) that defines each output as being derived from all inputs.

The first solution is somewhat preferable as it makes the derivations explicit and is more interoperable.
TOOLS
provenance.ecs.soton.ac.uk

Southampton Provenance Suite

Validator
A RESTful web service that validates PROV descriptions against the PROV Constraints specification. Supports uploading PROV by URL, file upload, or inline statements.

Translator
Translates between different representations of PROV. Supports PROV-N, PROV-XML, PROV-O and PROV-JSON.

Store
A provenance repository that allows storing, browsing, and managing provenance documents via a Web interface or a REST API.

Applications
- CollabMap - a platform for crowdsourcing the task of identifying building evacuation routes
- AgentSwitch - a personalized energy tariff-recommendation system
- PoN - an experimental web application for collecting and organizing research data and notes

Tools
- ProvToolbox - a Java toolbox for handling PROV
- ProvPython - a Python implementation of the PROV data model
- ProvExtract - for dealing with PROV embedded in web pages
- ProvVis - experimental visualizations of PROV

PROV
- Overview of PROV
- PROV Model Primer
- PROV-O
- PROV-DM
- PROV-N
- PROV Constraints
- Provenance Working Group at W3C
- PROV-JSON
ProvValidator
ProvTranslator
Welcome to Prov Store

Prov Store is a free service for storing, viewing and collaborating on provenance documents together with others or in private. You can browse public documents without registration or register to store your own.

Sign Up Now Find out more

Create
Store documents and collaborate on them with others using group-based or individual access rights.

Query
Search for specific documents or subsets of graphs using our query and search system.

Share
Host your documents on our servers so others can trace provenance of your entities at a centralized location.

Analyze
We gather statistics about your data to give you valuable insights.

Connect
Query, insert and update graphs using our REST API and connect to your apps using OAuth support.
ProvVis
ProvToolbox

Java toolbox to create and convert W3C PROV data model representations

using @Lob instead of string

lucmoreau authored a month ago

.settings eclipse prefs
prov-dot [maven-release-plugin] prepare for next development iteration
prov-interop Embedded jnet Equals/ToString interfaces and implementation in prov-
prov-json added known namespaces in prov-json importer
prov-model Embedded jnet Equals/ToString interfaces and implementation in prov-
prov-n [maven-release-plugin] prepare for next development iteration
prov-rcf Embedded jnet Equals/ToString interfaces and implementation in prov-
ProvPy

prov 0.5.3

A Python implementation of PROV data model, providing simple provenance tracking and persistence using Django ORM.

WARNING: Under active development

This package provides an implementation of the PROV Data Model in Python. It contains a number of sub-modules:

- prov.model: In-memory classes for PROV assertions. ProvBundle.JSONEncoder and ProvBundle.JSONDecoder provide JSON serialisation and deserialisation for a ProvBundle in the PROV-JSON representation. In addition, the prov.model.graph module exports PROV documents into graphical formats (e.g. PDF, PNG, SVG).
- prov.persistence: A Django app for storing and loading ProvBundle instances to/from databases using Django ORM
- prov.tracking: a logging-like module to facilitate tracking provenance in Python programs

See prov/model/test/examples.py for example usages.

Deployment: The package was used to build ProvStore, a repository for provenance documents.
Even More...
Git2Prov

Enter a Git Repo:

Choose a serialization:
- PROV-JSON
- PROV-N
- PROV-O
- SVG

Download

Powered by:
About PROV-O-Viz
With PROV-O-Viz you can visualize any provenance graph expressed using the W3C PROV-O vocabulary as an intuitive Sankey diagram. Really neat.

PROV-O-Viz was developed by the Data2Semantics project, funded under the COMMIT/ programme.

How to use it
To see what it does, you can point PROV-O-Viz to your own SPARQL endpoint, containing Named Graphs with PROV-O activities and entities in it.

Alternatively, you can simply copy and paste some of PROV-O in Turtle format in the Paste-And-Go form.

Finally, you can POST PROV-O in Turtle format to the PROV-O-Viz service, and we'll return a self-contained HTML snippet for you to include in your website.

- The service lives at http://provoviz.org/service, and
- expects a POST with a graph_uri parameter (a URI that identifies your provenance graph), and
- using a similar format to the Paste-And-Go form.
PROV-O-Matic

Python Provenance Tracer

** Author: ** Rinke Hoekstra, VU University Amsterdam, rinke.hoekstra@vu.nl

Provenance is key in improving the transparency of scientific data publishing.

PROV-O-Matic provides three things:

- a *decorator* for functions and methods that builds an RDF PROV-O representation of the inputs and outputs of the respective function. The provenance trace is persistent within a Python session. And,
- it integrates provenance tracing in IPython Notebook, a tool frequently used by scientists for analysing data, and reporting on it. All functions defined in the notebook are automatically decorated, and all executions of steps in the notebook are recorded as well (including changing variable values). And
- it connects to PROV-O-Viz for interactive visualization of the provenance graph, and integrates it into IPython notebook.
Taverna PROV support

This is a plugin for the Taverna Workbench and Taverna Command Line which allows export of the provenance of a workflow run according to the W3C PROV-O standard.

Source code and license

This plugin is distributed under the GNU Lesser General Public License 2.1 (LGPL). The source code for this plugin is available at https://github.com/taverna/taverna-prov

Installation for Taverna workbench

You need:
- Taverna Workbench 2.8.5
- Java 1.7 (now 1.8)

WINGS is a semantic workflow system that assists scientists with the design of computational experiments. A unique feature of WINGS is that its workflow representations incorporate semantic constraints about datasets and workflow components, and are used to create and validate workflows and to generate metadata for new data products. WINGS submits workflows to execution frameworks such as Pegasus and OODT to run workflows at large scale in distributed resources. [more]
komadu

Provenance Collection and Visualization Tool

Komadu is a redesign of Karma (OPM based provenance implementation) which supports the W3C PROV specification. It comes with a new Client API which aligns with the W3C PROV standards. This Client API is more generalized and supports capturing any kind of provenance.

Following is a quick start guide for Komadu. More information can be found in docs/KomaduUserGuide.pdf.
Nipype: Neuroimaging in Python Pipelines and Interfaces

Current neuroimaging software offer users an incredible opportunity to analyze data using a variety of different algorithms. However, this has resulted in a heterogeneous collection of specialized applications without transparent interoperability or a uniform operating interface.

Nipype, an open-source, community-developed initiative under the umbrella of NiPy, is a Python project that provides a uniform interface to existing neuroimaging software and facilitates interaction between these packages within a single workflow. Nipype provides an environment that encourages interactive exploration of algorithms from different packages (e.g., SPM, FSL, FreeSurfer, Camino, MRtrix, MNE, AFNI, Slicer), eases the design of workflows within and between packages, and reduces the learning.
Build Linked Data Applications
... directly in your Web Browser

Callimachus serves all your Linked Data needs:

- Graph Storage
- Integrated Development Environment
- Visualizations
- Web Publishing
Oh, yeah?

Lost that feeling of trust?
Here's some information about this document.

Request date: Fri, 08 Feb 2013 14:07:44 GMT
Last modified on: Wed, 06 Feb 2013 10:49:01 GMT

Linked provenance resources

- example
- Valid: This is valid provenance
- URI: http://users.uocent.be/~tdenies/provenance/example.provn
- Target: http://ruben.verborg.org:1234/
- Serialization: PROV-N

- example2
- example

This button helps you regain your feeling of trust.

In 1997, Tim Berners-Lee proposed that each browser should have a button marked “Oh, yeah?” that you can press when you lose the feeling of trust when viewing a document. Upon pressing the button, information is shown about why you should (dis)trust it.

Developed by Multimedia Lab – iMinds – Ghent University.
Popular repositories

- Wikipedia-PROV
 The repository for the Wikipedia-PROV team.

- Chiron-PROV

- CSIRO-PROV
 The repository for the CSIRO-PROV team.

- OBIAMA
CONCLUSION
Concluding Remarks

• A data model with core and extended terms
• Valid provenance
• Serializations into various Web languages
• A set of design recipes
• Some tools emerging
Further reading

Provenance: An Introduction to PROV

Luc Moreau
University of Southampton
Paul Groth
VU University Amsterdam

SYNTHESIS LECTURES ON SEMANTIC WEB #1

www.provbook.org
VALIDATION
Use Case (1): Version Problem

- NowNews provenance indicates that an article includes a quote from another document.
- That document happens to be the compilation produced by PolicyOrg. The compilation itself includes the NowNews article.
- A circularity occurs in the provenance, which is indicative of a problematic description.
Use Case (2): Date Issue

- A plot was computed from a data set. The plot timestamp is found to precede the data set timestamp.
- Given that the plot was derived from the data set, this is an indicator of a problem.
Principles of Validation

- The intent of validation is to ensure that PROV descriptions represent a consistent history of objects and their interactions.
- Once established valid, PROV descriptions are safe to use for the purpose of logical reasoning and other kinds of analysis.
PROV Events

• Time is critical for provenance, since it can help corroborate provenance descriptions.
• PROV makes no assumption on the clocks being used when asserting time: a unique clock is not expected, nor clocks are expected to be synchronized.
• Instead, PROV relies on an event model describing changes in the world.
Five Types of Events

Events
• generation
• invalidation
• usage of entities
• start
• end of activities

Order
• event1 (strictly) precedes event2
Entities Have a Lifetime

Generation precedes invalidation. Usage follows generation and precedes invalidation.
Activities Have a Lifetime

\[s \leq e \]
Usage within Activity Lifetime

Usage follows start and precedes end.

\[
s \leq u3 \\
u3 \leq e
\]

\[
s \leq g4 \\
g4 \leq e
\]
Constraints associated with Derivation

Generation of used entity strictly precedes the generation of the derived entity.

\[g_1 < g_2 \]
\[u \leq g_2 \]
\[g_1 \leq u \]
Simultaneous Events

Two generation events for an entity occur simultaneously.

\[g_1 \leq g_2 \]
\[g_2 \leq g_1 \]
Nested Intervals and Specialization

The lifetime of a specialized entity is included in the lifetime of the general entity.
Event Chart for Use Case: article :art include quote from :c1 and was itself included in :c2. The generation :g1 of :c1 strictly precedes the generation :ga of :art, which strictly precedes the generation :g2 of :c2.

NowNews provenance indicates that an article includes a quote from the compilation produced by PolicyOrg, which includes the NowNews article.

- **invalid**
 - $g < g_a$
 - $g_a < g$

- **valid**
 - $g_1 < g_a$
 - $g_a < g_2$
 - $g \leq g_1$
 - $g \leq g_2$
A plot was computed from a data set. The plot timestamp is found to precede the data set timestamp.