

Combining various open data sources for P-gp/BCRP selectivity profiling

Barbara Zdrazil, Floriane Montanari, and Gerhard F. Ecker

University of Vienna, Dept. of Pharmaceutical Chemistry, Pharmacoinformatics Research Group, Althanstraße 14, 1090, Vienna, Austria

Email to: barbara.zdrazil@univie.ac.at

Background:

The human ATP binding cassette (ABC) transporters **Breast Cancer Resistance Protein (BCRP)** and **Multidrug Resistance Protein 1 (P-gp)** are **co-expressed in many tissues and barriers**, especially at the blood-brain barrier and at the hepatocyte canalicular membrane. Understanding their interplay in **affecting the pharmacokinetics of drugs** is of prime interest. *In silico* tools to predict inhibition and substrate profiles towards BCRP and P-gp might serve as early filters in the drug discovery and development process. However, to build such models, pharmacological data must be collected for both targets, which is a tedious task, often involving manual and poorly reproducible steps.

Multi-class classification for P-gp/BCRP profiling

1. The label powerset transformation (dense dataset)

1A. Three-class classification:

distinguishing between different types of transport inhibitors

Bagging of J48 / 71 interpretable MOE descriptors

→ Most important descriptors:

- SlogP
- SS 2
 SS 2
 SS 3
 Sthe number of aromatic atoms
 Sthe number of donor and acceptor
 10 atoms

SS 2 SS 2 SS 3 the shortest paths between all pairs of heavy atoms)

Distribution of SlogP among the three kinds of inhibitors Top panel: barplot of the counts per binned value

1B. Two-class classification: exploring selectivity

Tree depiction of the **JRip model** to separate P-gp-selective inhibitors (red leaf) from BCRP-selective inhibitors (green leaves).

Only two descriptors were sufficient to separate selective BCRP inhibitors from selective P-gp inhibitors.

2. Binary relevance and Classifier chains: exploiting all the data (sparse dataset)

Y3

cpds	x1	x2	Y1
1	0.7	0.4	1
2	0.6	0.2	1
3	0.1	0.9	0
4	0.3	0.1	0
h1: X •	→ Y1		

Binary relevance: building independent models for each label and using them together for the final prediction; ③: labels are treated as independent variables

Algorithms	Macro-accuracy	Macro-MCC	Macro-AUC
inary relevance, Logistic Regression	0.812	0.594	0.793
lassifiers chain, Logisitic Regression	0.812	0.594	0.793
inary relevance, RandomForest	0.835	0.641	0.808
lassifiers chain, RandomForest	0.836	0.643	0.809
inary relevance, SVM	0.766	0.504	0.749
lassifiers chain, SVM	0.767	0.504	0.750

Classifier chains: list of labels is shuffled and a model is trained using the first label and all the data for which there is an annotation for that label \rightarrow predict this label (as a score between 0 and 1) for all compounds of the dataset (even those for which there was no information for that label) \rightarrow prediction is appended to the features matrix and serves as additional descriptor for training the next model, on the second label and so on....

of SlogP. <u>Middle panel</u>: proportions of each class in each bin, by putting each bin count to 100%. <u>Lower panel</u>: Matthews Correlation Coefficient (MCC) that would be obtained by splitting the data at each SlogP value. MCC values that peak above or below 0 show ideal thresholds to separate the data between classes. The colored dotted lines corresponds to the peaks of MCC and the corresponding SlogP values (between 3 and 4) for separating class 1 from 2 (red dotted lines) and class 2 from 3 (green dotted lines).

Conclusions:

- The workflow proved a useful tool to **merge data from diverse sources**. It could be used for building multi-label datasets of any set of pharmacological targets where there is data available in the open domain *or in-house*.
- Label-powerset revealed important molecular features for selective or polyspecific inhibitory activity.
- By using the sparse dataset with **missing annotations**, predictive models can be derived in cases where **no accurate dense dataset is available**.

cpds	•	x1	x2	Y1	Y2
1		0.7	0.4	1	1
2	2	0.6	0.2	1	1
3	3	0.1	0.9	0	0
4	ł	0.3	0.1	0	0
h1: h2: h3:	X · X+ X+	→ Y1 ·Y1 → ·Y1+Y	• Y2 72 → Y3		

References:

h2: X → Y2

h3: X → Y3

[1] Montanari F. et al., Mol. Inform. 2014, 33, 322.
[2] http://www.knime.org
[3] Williams AJ et al., Drug Discov Today, 2012, 17, 1188.

Acknowledgements:

The research leading to this work has received support from the **Austrian Science Fund** (FWF), Grant **F03502** and from a '**Back to Research Grant**' funded by the Faculty of Life Sciences, University of Vienna. We acknowledge support from the **Innovative Medicines Initiative** Joint Undertaking under grant agreement no. [115191], resources of which are composed of financial contribution from the European Union's Seventh Framework Programme (FP7/2007-2013) and in-kind contribution of EFPIA companies.