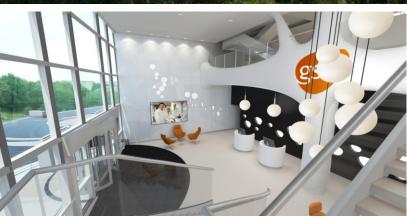


Data and Analysis in the Phenotypic World

OPhacts – Santiago de Compostela 16th-17th Feb 2015

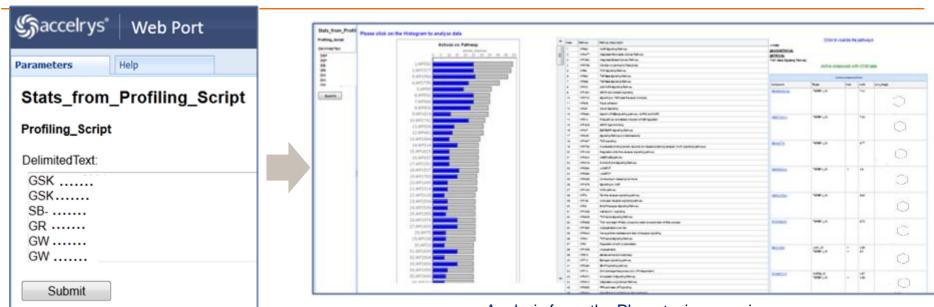

Ceara Rea

Introduction

- Computational Chemist
 - Have been working @GSK for nearly 10 years
 - Based at the Stevenage site

- I've worked on several phenotypic projects (data compilation & analysis)
- Skills:
 - Data storage (databases)
 - Programming (Python) & query language (SQL)

Phenotypic Analysis

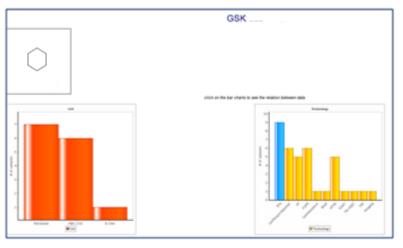

Overview

- Getting the data Data Integration
 - Workflows for :
 - Compound target profiling (target deconvolution)
 - · Compound selecting (focussed screen, hypothesis validation)
 - Phenotype profiling
 - What issues are there?
 - · Missing or unrecognisable data
 - Level of reporting (compound: salt/parent, target: transcript/gene)
 - Too much/irrelevant data
 - Standardisations/normalisations (identifiers, synonyms, controlled vocabularies)
 - Speed/technical difficulties
- Analysing/Visualising the data
 - What gives you **confidence** that a target/pathway is involved in a phenotypic mechanism?
 - · A summary of activities can give first indication, but need to dig into the data
 - Expose info on specific assays with cells/technologies etc
 - » Assay interference/nuisance behaviour/endogenous activities
 - Think about the compounds involved
 - » Have we got different chemotypes for a target?, what about compounds near neighbours?
 - Investigate selectivity profiles for compounds
 - Can we correlate target activity with phenotypic response?
 - Can we show activity at multiple targets on a pathway?
 - If full panel of data available, what stats/probability scores can be generated

Pipeline Pilot Protocol for Analysis of Phenotypic Screening Data

Pipeline Pilot protocol

NED Signating Pullway


Inter 20/2/20/33

Litter Supports

Light 1 (1/2/2)

Pathway

Analysis from the Phenotypic screening

Compound specific information

Compound Profiling for Target Deconvolution

Compound Profiling Hits from a Phenotypic Assay

gsk

Workflow Overview

Currently not using OPhacts for Compound Information

- Take the hits from the phenotypic assay
- Compound Profiling:
 - 1. Expand an 'input' compound id to include all synonyms/salt ids & use a unique parent id:
 - **NICOTINE**|CHEMBL3|CHEMBL225057|CHEMBL1628647|CHEMBL3137669|CHEMBL151515|CHEMBL1201536|CHEMBL1448280| AUREUS10053|AUREUS230964|AUREUS566530|AUREUS566532|GR117011X|GR117011B|GR117011C|SKF-7925-A|BRL-9889NS
 - 2. Retrieve and collate all assay data and associated information for those ids
 - Datasources:
 - Activity data: Internal GSK, ChEMBL, Aureus
 - Compound associated data: Liabilities, projects, properties
 - Assay meta data: Internal GSK (technology/cell line)
 - Target & pathway data: Internal GSK, OPhacts, Wikipathways, GeneGo
 - 3. Summarise, pivot & bin activities
 - Aggregate at a target level
 - Best activity reported
 - Bins for activity @ '='. > 5.5, > 7
 - 4. Output summary files
 - Compound top 3 targets, no. of targets/assays tested/no. actives
 - Targets no. of compounds tested/no. of actives (Bins for activity @, '='. > 5.5, > 7)

External Data Integration

- Objective:
 - Integrate external bioactivity data with GSK internal to provide an enriched profile of target activity for each compound
 - Datasources:
 - ChEMBL
 - Aureus
- How has this been achieved? the good, the bad & the ugly.....

The Good

- ➤ Direct compound lookups
 - ➤InChi keys have been added to the compound information
 - > Aureus contains InChi keys
 - > You can do compound lookups using inChi keys in the ChEMBL web services
- > Retrieving a compound name and external ids is a **big** plus
 - > You can look up a name on wikipedia, and get all sorts of info about MoA
 - External ids can be used to browse the raw data

External Identifiers

NICOTINE|GR 117011X|GR 117011X|GR 117011X|GR 117011X|GR117011X|GR117011|GR 117011A|GR 117011A|GR 117011A|GR 117011B|GR 117011B|GR 117011B|GR 117011C|GR 117011C|GR 117011C|GR 117011D|GR 117011D|GR 117011D|GR 117011D|GR 117011F|GR 11701F|GR 117011F|GR 117

REUS10053|AUREUS230964|AUREUS566531|AUREUS36204|AUREUS566530(AUREUS566532)AUREUS270129|AUREUS777
864|Nicotine bitartrate|Nicotine dihydrochloride

External IDs are provided

	CompoundProfile.csv						
4	A		В	С	D		
1	COMPOL	JND Syn	nonymsMerged	PrefPcn	Psmiles		
2	CCI133	ASP	PIRIN CCL16716 CCI 16716 CCI 16716 CCI16716 BRL9066 BRL-9066 AH 5311 AH 5311	CCI133	CC(=O)Oc1		
3	GR1170	1A NIC	COTINE GR 1 <mark>7</mark> 7011X GR 117011X GR 117011X GR117011X GR117011 GR 117011A GR 11	GR117011	CN1CCC[C		
4	AH14925	AA CAF	FFEINE SKF6053 SKF-6053 CCI 3994 CCI 3994 CCI 3994 CCI3994 BRL7867AA BRL-7867AA	AH14925	Cn1cnc2n(

External Identifiers – Targets

The Bad

- ChEMBL and Aureus use Uniprot Ids as a standard identifier
- In house (GSK) we use Tar Ids

Link?

- Internal database contains ncbi (entrez) gene ids and refseq ids but not Uniprot ids
 - Uniprot Id RefSeq_p Tar Id
 - Initially implemented with OPhacts, but now using the Uniprot Id mapping service
 - Restful service, minimal data, batch input

External Identifiers - Targets

The Ugly

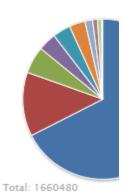
- Not all targets can be mapped back
- Aureus is very poorly annotated with Uniprot Ids

Can't always get a symbol

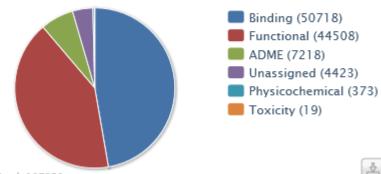
TopTarget	TopTarName	TopTarClass	Top3Targets
AURTAR77590_	PEPTIDYL-PROLYL CIS-TRANS ISOMERASE FKBP12		PEPTIDYL-PROLYL CIS-TRANS ISOMERASE FKBP12:9.48 EIF4E:9.3 F
tar72192	EHMT2	TRANSFERASE	EHMT2:4.85 Cruzaine:4.7 POLK:4.45
tar5384	IGF1R	TRANSFERASE_KINASE	IGF1R:8.66 INSR.8.64 ERBB4:7.99
AURTAR46_9606	ALPHA2		ALPHA2:8 72 ALPHA ADR_RAT:8.26 ADRA2A:8.25
CHEMBL5221	IR1_RAT		R1_RAT:7.95 IMIDAZOLINE 1 RECEPTOR_RAT:7.95 ADRA2C:7.9
V	ague target definitions		Can't get target class

Will get the same data from the different sources

Current implementation is only using data with a UniProt Id


External Identifiers Targets

CHEMBL612545


Target Associated Bioactivities

ChemBL Act Target Name and Classification

Target ID	CHEMBL612545
Target Type	UNCHECKED
Preferred Name	Unchecked
Synonyms	
Organism	
Species Group	No
Protein Target Classification	Not applicable

CILCUIDE MODAYO TOT TATGET CITEMBL612545

Total: 107259

Associated Compound Data

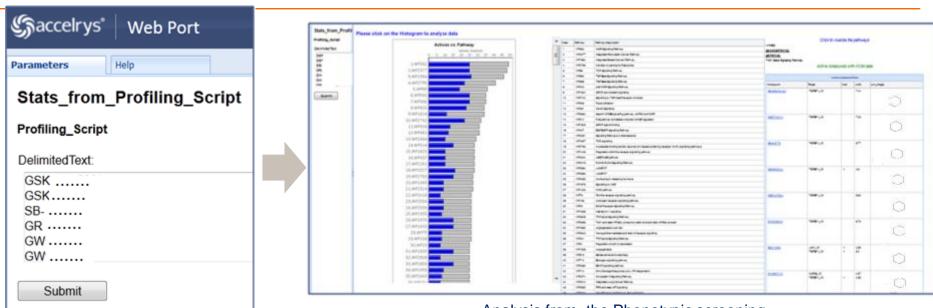
• When being profiled a compound gets flagged as having a possible liability if:

- It has a high hit rate
- It has a common nuisance substructure
- Compound degrades in DMSO
- Compound has poor oxidative stability
- Compound has measured auto-fluorescence
- Interferes in a specific assay format

- Has been active in a cytotoxicity assay
- Has been active in a specificity assay*

Internal lookup table available

Hand curated internal lists of assays used

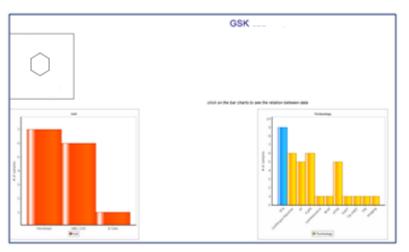

Digging Into and Visualising the Data

- A Pipeline Pilot protocol has been developed to enable browsing of all data at an assay level for phenotypic assay hits
- Mechanistic biological information can be browsed via pathway maps
 - Compound target activities are overlayed onto wikipathways
 - Things to look for to improve confidence:
 - Are different targets involved?
 - Are there different chemotypes involved?
- Compound specific information, presented in terms of interactive html page, gives a comprehensive understanding of the profile of an interesting compound
 - Drill down allows you to see:
 - Activity at all targets (selectivity)
 - Behaviour in cells and technologies (nuisance? Endogenous activity?)

Pipeline Pilot Protocol for Analysis of Phenotypic Screening Data

Pipeline Pilot protocol

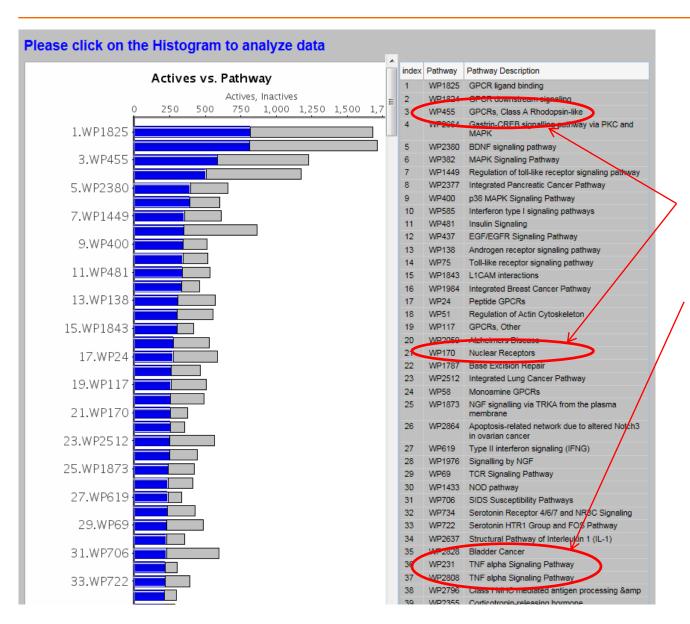
NED Signating Pullway


Inter 20/2/20/33

Litter Supports

Light 1 (1/2/2)

Pathway

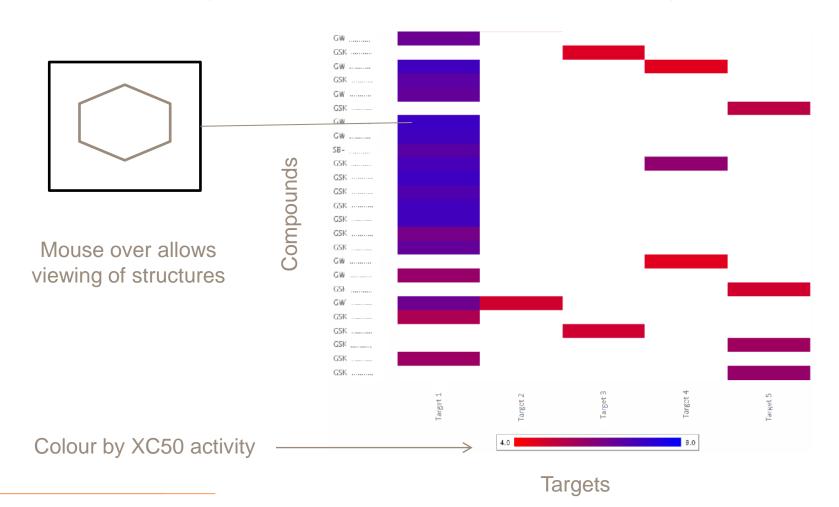

Analysis from the Phenotypic screening

Compound specific information

Visualising Pathway Activities

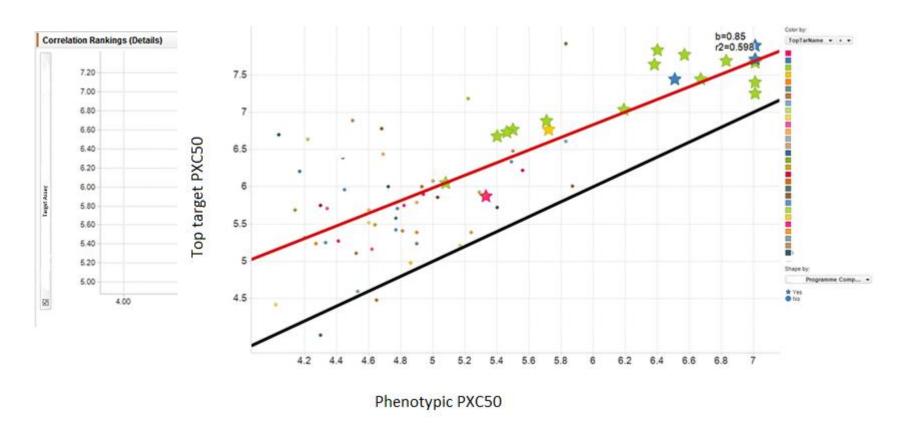
Some of the pathways aren't really pathways

Some duplication


Looking for bars like this:

Visualising Pathway Activities

Heat maps can display where compound activities lie in a pathway



Correlations – Phenotypic vs Target Assays

Example

- Retrieving all assay data means that correlation analysis can be performed
 - Given a decent overlap between assays
 - Pearson/Spearman coefficient or probability can be calculated

Can even correlate top target activity

Compound Profiles - Similarity Expansion

Example

- 3 Different chemotypes observed in hits for target X
 - Run similarity searching for near neighbours using cut off tanimoto 0.9
 - Assess the profiles of the near neighbours

Chemotype 1

No near neighbours

1 cmp has activity at target X

Chemotype 2

4 near neighbours5 cmps have activity at target X

Chemotype 3

5 near neighbours1 cmp has activity at target X2 cmps have activity at target Y1 cmp has activity at target Z

Focussed Screening/testing hypotheses

- A list of targets is generated from a bioinformatics analysis
 - INPUT: Short gene name or list of (*deals with synonyms)
 - Queries for marketed drugs associated to that target
 - Queries for GSK candidates/leads for projects associated to that target
 - · Queries tractable hits for projects associated to that target
 - · Queries for compounds requested against a project associated to that target
 - Queries for compounds having a measureable result in an assay for that target
 - Queries the Aureus/Chembl for most potent compounds
- At this stage you have a list of compounds (which may be quite large). The top compounds are selected by a scoring triage:-

– MarketedDrug: 20 points

Candidate: 15 points

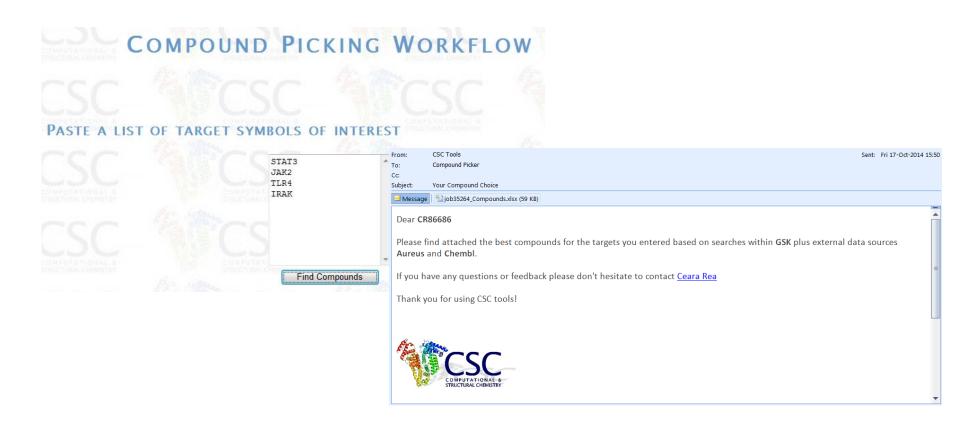
Lead: 10 points

TractableHit: 5 points

Project code 3 points

Assays for target

*potential (+3 points for each assay)


• '=' Result 1 point

• >5.5 1 point

• >7 1 point

- Objective
 - Find 'best' compounds by target for a biologically focussed screen
- Website available

• The data is split into different sheets for each data source with a master sheet giving extra annotation for GSK data

Data sources

Target IDs for Different Species/transcripts

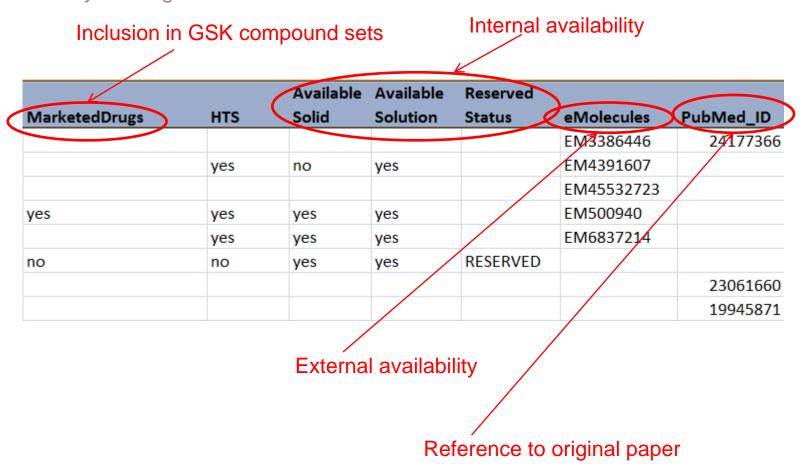
Found GSK Chembl		
	GSK Taries	tar159650;tar159649;tar49695;tar30456;tar110565;tar64179;tar103011;tar151774
	GSK Names	STAT3_V0;STAT3_V1
	GSK Projects	
		Project_ID<1>:Project title for ID 1 (MoA)
		Project_ID<2>:Project title for ID 2 (MoA)
	GSK Assays	K
	K	Assay_D<1>:Title for assay 1 (inc cell line and technology)
		Assay_ID<2>:Title for assay 2 (inc cell line and technology)
		Assay_ID 3>:Title for assay 3 (inc cell line and technology)
		Assay_ID<4>:Title for assay 4 (inc cell line and technology)

Projects and Assays queried and used for the Scoring

Output File

For Compounds found in GSK:-

Sources are mdrugs/candidates/leads/tractable hits/assay hits


	7				Compound		BestTarget	
1	TARGET	Source	Name	•	Number	-	XC50	×
941	TARGET1	mdrugs	DRUGNAME		CCI			
942	TARGET1	candidates			GW			
943	TARGET1	leads			GW			
944	TARGET1	activecmplist			GSK			7.1
945	TARGET1	activecmplist			GSK			6.5

Compounds may not have an XC50 value if they haven't been tested in house

 For compounds found external to GSK, compound is mapped back to GSK & full availability info is given:

Phenotypic Profiling

Phenotypic Profiling

- There are many published phenotypic assays available
 - Possibility to profile across them
 - Current internal compound profiling workflow only looks at target assays
 - Biological fingerprinting of external data would be difficult as completely different sets of compounds tested in the assays
 - A hit in a similar (but not the same) phenotypic assay, may give valuable insight into a compound's behaviour
- Need to identify which are the phenotypic assays
 - Problem internally and externally
 - ChEMBL has assay type 'F' (functional), filter out those with a target?
- Need to classify types of phenotypic assay?
 - ##### Not all phenotypic assays are the same #####
 - An imaging assay measuring neurite out growth is very different to one measuring gene expression by fluorescence/luminescence

Phenotypic Profiling

- GSK is working with an external partner to profile compounds in a range of human disease models (system mechanistic approach)
 - Primary cell lines are being used (diseased/non-diseased)
 - Cells are stimulated and then treated with compounds
 - Various phenotypic endpoints are measured in each system
 - Typically expression levels of biomarker(s) (up/down regulated)
 - Can be other more physical measurements, eg cell count (proliferation/cell death)

Relevant meta-data captured for each system:

Cell Diseased Healthy

Stimuli

BioMarkers

Disease / tissue relevance

Predicted targets