

Open PHACTS Workshop: Understanding the knowledge management needs of phenotypic screening

16.02.15

The Key Challenge of Phenotypic Screening Analysis

- The phenotypic screen is *per definition* target agnostic This is different than screening in a cell based model with known target.
- Lead optimization is in such assays considered more difficult
- In Silico hit annotation, both based on experimental data or in silico models will support:
 - Experimental target deconvolution
 - Further biological validation
 - Assessment of potential tox liabilities (off-targets)
 - Future assay development and lead optimization

Proposed in-silico Workflow for Phenotypic Data Analysis

Needs for Additional Supporting Data

Genes and Targets in OPS

- The Issue:
 - Chemical compounds act on targets (proteins) §
 - Pathways contain proteins but WikiPedia refers to genes
 - Tissues express both genes and proteins, NextProt only takes proteins

 but we cannot link to gene expression
 - DisGenet connects diseases and genes

 but we cannot link compounds to genes
 - One cannot link genetic and mutation information
- A Possible Solution:
 - Use UniProt mapping file to find Entrez Gene IDs (<u>ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/idmapping/idmapping_selected.tab.gz</u>)
 - But the Swiss-Prot curated section only covers 95% of human, 95% of mouse, 90% of rat, 80% of cattle and less for other species
 - Also use NCBI Entrez Gene IDs mapping file to find UniProt AC (<u>ftp://ftp.ncbi.nih.gov/gene/DATA/gene2accession.gz</u>)
 - It's a bit involved, but one can use both files to confirm each other or to get more coverage from each one

