

Accessing OpenPHACTS:

Interactive exploration of compounds and targets from the semantic web

Katrin Stierand

ZBH Center for Bioinformatics Hamburg

Outline

- OpenPHACTS
 - What is OpenPHACTS and why do we need it?
 - Use case driven development
 - Technical structure, eApps
- ChemBioNavigator
 - GUI and technical structure
 - Workflows

Why do we need Open PHACTS?

 Pharmaceutical companies currently expend significant effort integrating the vast amount of data publicly available into internal architectures.

Currently, pharmaceutical companies assemble their own in-house databases of pharmacological and physicochemical data.

Drug discovery process is hindered by repetition of:

- Data extraction
- Transformation
- Loading stage

Overall trend in R&D efficiency, inflation-adjusted (J. W. Scannel, A. Blanckley, H. Boldon and B. Warrington, *Nat. Rev. Drug Discov.*, 2012, **11**, 191-200, (doi:10.1038/nrd3681))

Katrin Stierand March 2014

What is OpenPHACTS?

- OpenPHACTS Discovery Platform
 - an online platform with a set of integrated publicly available pharmacological data
- Open Pharmacological Space
- Intended to facilitate improvements in drug discovery in academia and industry
- Use and enhance semantic web standards

Open PHACTS Project Partners

Universität Hamburg

DER FORSCHUNG | DER LEHRE | DER BILDUNG

Pharmacology within Open PHACTS

active at <100 nM in both human and

The number of pharmacological questions that could be useful to answer is large, and Open PHACTS concentrates on answering the **top 20 ranked research questions** from a list of 83 proposed by consortium members.

6

context of Alzheimer's disease?

targets have been patented in the

#1.

mouse.

Physicochemical data

Identifiers

Pharmacological data

Molecular weight & formula

Synonyms

Activity type, value and concentration

H-Bond acceptors / donors

SMILES

Assay description

Polar surface area, AlogP

InChI / InChIkey

Target organism

Melting point

ChemSpider ID

Target name

How does Open PHACTS work?

The ChemBioNavigator (CBN)

www.chembionavigator.org

Google style: Interactive – Simplicity rules

Stierand K., Harder T., Marek T., et al. Molecular Informatics, Volume 31, Issue 8, p. 543–546, August 2012

ChemBioNavigator GUI

March 2014

Features

- Provenance: all data is interlinked with the original source
- Drill-down: interactive sorting based on public <u>and</u> private properties
- Housekeeping: put compounds in "buckets" to retain an overview
- Searching: based on similarity, substructure or related target
- Persistence: store a session and resume work later

Development strategies

- Several interviews with people from pharmaceutical industry
- Knowledge of valuable features and deficiencies
- Extract trends from all interviews
- => agile and target-oriented development

Workflows

- Compound centric <-> target centric
- Extension and drill-down of data
- Three main workflows (following slides)
 - two compound centric
 - one target centric
- Workflows can be combined

Workflow I

- Start with a single compound name or a SMILES and extend the molecule set by related compounds:
 - a) Find target via assay data and load all compounds from OPS, which are active against this target
 - b) Start a similarity search
 - c) Define a substructure and start a substructure search

Workflow II

- Start with target name
- The CBN loads the target information from OPS.
- On mouse click, all active compounds are loaded in the CBN.

Workflow III

- Start with a set of SMILES or a SD file:
- The given compounds are initialized by NAOMI and annotated with data from the OPS.

O=C(O)C(c1ccc(cc1)CC(C)C)C
O=C(O)C(c1ccc(cc1)CC(C)C)C
O=C(O)[C@@H](c1ccc(cc1)CC(C)C)C
O=C(O)C(c1ccc(cc1)CC2CC2)C
O=C(O)C(@@H](c1cccc1)C
O=C(O)C(c1ccc(cc1)CC(c2cccc2)C)C
O=C(O)C(c1ccc(cc1)CC(c2cccc2)C)C
O=C(O)C(c1ccc(cc1)CC(C2cccc2)c3ccccc3
O=C(O)C(c1cc(cc1)CC)C
O=C(O)C(c1cc(cc1)CC)C
O=C(O)C(c1cc(cc1)CC)C
O=C(O)C(c1cc(cc1)CC)C
O=C(O)C(c1ccc(cc1)CC(C)C
O=C(O)C(c1ccccc1)CC(C)C
O=C(O)C(c1ccccc1)CC(CO)C
O=C(O)C(c1ccccc1)CC(CO)C
O=C(O)C(c1ccccc1)CC(CO)C
O=C(O)C(c1ccc(cc1)CC(CC)C)C
O=C(O)C(c1ccc(cc1)CC(CC)C)C
O=C(O)C(c1ccc(cc1)CC(CC)C)C
O=C(O)C(c1ccc(cc1)CC(CC)C)C

Conclusion

- OpenPHACTS integrates data from different data sources and provides it via an API
- Design and choice of sources use-case driven
- CBN exemplarily uses the OPS
- Enables navigation through the chem-bio space
- Development of workflows based on interviews with scientists of pharmaceutical industry

Acknowledgement

- Tim Harder Philips Medical Systems DMC GmbH
- Lothar Wissler BioSolveIT GmbH
- Christian Lemmen BioSolvelT GmbH
- Matthias Rarey ZBH Center for Bioinformatics

The development of the ChemBioNavigator in the context of the OpenPHACTS project is funded by the Innovative Medicines Initiative Joint Undertaking under grant agreement n° [115191], resources of which are composed of financial contribution from the European Union's Seventh Framework Programme (FP7/2007-2013) and EFPIA companies' in kind contribution.

Thank you for your attention!

