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Abstract  

The identification of proteins which could be potential targets for new pharmaceutical 

products is invaluable for the continued improvement people’s quality of life and 

expansion of available treatment options. In order to aid the discovery of new drug 

targets, predictions of every human gene likely to be exploitable by compounds and 

biotechnology were generated using open source tools and publicly available data. An 

automated pipeline was produced in order to minimise the effort required to reproduce, 

update and expand this work.  

In total, using various different prediction techniques, over 15,000 genes were predicted 

to code potential targets. An optimistic estimate of the druggable genome at 5,097 genes 

was produced. These genes contain one or more of the same Pfam protein domains as a 

drug target (a protein displaying significant activity with a phase four drug from 

ChEMBL database). The preliminary techniques explored here estimate the 

biopharmable genome to encompass between 3,169 and 8,117 genes. However, as they 

failed to identify many of the known approved targets, it is likely this is not an accurate 

representation. 

An easy to run, updated and expandable prediction pipeline, which annotates genes with 

a predicted druggable target class as well as a ChEMBL target class, if available, has 

been produced in Perl and implemented within GlaxoSmithKline. 
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1  Introduction 

1.1 Drug Discovery and Development  

The discovery and development of new pharmaceutical products is essential to expand 

available treatment options and continue to improve people’s quality of life. Areas of 

particular importance include those diseases with limited or absent treatment options 

and those where existing medication only works for selected patients. However, getting 

a new drug to market is not a simple task. De novo drug discovery, shown in Figure 1.1, 

takes approximately 10-17 years from the discovery of a new medicine to when it is 

available to treat patients. The clinical trials alone take between 5-6 years and involve 

thousands of volunteers. Ultimately, for every 5,000-10,000 compounds which enter the 

research and development (R&D) pipeline, only one is approved (PhRMA, 2007, 

Ashburn and Thor, 2004). 

Figure 1.1: The R&D process. 

The phases of drug development and estimates of the amount of time each stage of development takes. 

The probability of success is lower than 10% (from Ashburn and Thor, 2004, Figure 2) . 

 

1.1.1 Target Identification and Validation 

The pre-discovery process revolves around gaining an understanding of a chosen 

disease and attempting to uncover the underlying causes of the condition (PhRMA, 

2007). At this stage, one of three methods is usually adopted. A mechanism based 

approach targeting compounds with a specific mode of action, a function based 

approach which attempts to normalise a disease specific abnormality or a physiology 

based approach, aiming to reduce disease specific symptoms (Sams-Dodd, 2006).  

The mechanism based approach starts with the identification of a molecular target to 

attempt to modulate with a drug. In most cases this target will be a protein, since the 

majority of successful drug activity is achieved though binding to and modifying the 
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activity of proteins (Hopkins and Groom, 2002). It is critical to ensure that both the 

target selected is involved in a disease and that it is compound binding or accessible to 

biotechnology (i.e. druggable or biopharmable). In other words, the chosen target 

should have the potential to interact with a drug and this interaction should potentially 

affect a disease state (PhRMA, 2007). A drug target can be upstream of a disease 

causing process, for example a receptor linked to a cascade linked to a disease state. 

However, the further upstream the target the more chance of affecting other processes 

and causing unwanted side effects. 

Advantageously, the target-centric approach to drug discovery can utilise high-

throughput small molecular screening strategies (Swinney and Anthony, 2011) where 

the chosen target is assayed against large compound libraries, often containing hundreds 

of thousands of drug candidates, and any binding activity is detected. These compounds 

of interest can be identified in a number of ways. Traditionally the majority of 

substances were identified from nature, for example the antibiotic penicillin from 

Penicillium fungi (PhRMA, 2007), and between 1999 and 2008 18 new drugs resulted 

from modifications to natural substances (Swinney and Anthony, 2011). A de novo 

approach uses computer modelling to create molecules from scratch or modify known 

compounds of interest. Biological therapeutics are produced by genetically engineered 

organisms (PhRMA, 2007).  

Phenotypic assays are employed in the function and physiology based approaches to 

drug discovery. These approaches do not require specific understanding of the 

molecular mode of action; instead, candidate drugs are selected based on functional 

activity observed in a cell or animal based assay. Since drug selection is based on 

observed activity an effect in humans can often be established more easily, however it is 

a challenge to optimise the properties of a drug without prior knowledge of the 

biological mechanism (Armstrong, 1999, Swinney and Anthony, 2011). 

Both target based and phenotypic approaches have specific benefits. Target based 

assays can identify compounds of interest more quickly than phenotypic screening, 

which is considerably lower throughput. The identification of potential targets based on 

supporting molecular knowledge appears to be the fastest and most efficient approach. 

Between 1999 and 2008, 100 new drugs were discovered by target based methods, 

compared to 58 by phenotypic approaches. However, phenotypic screening shows more 

success when identifying previously unknown molecular targets and producing first-in-

class drugs. In the same time period, 28 first-in-case drugs came from the phenotypic 

approach versus 17 drugs from the target based method (Swinney and Anthony, 2011). 

The use of a dual approach to drug discovery in industry is therefore justified in order to 

exploit the advantages of both methods, however this thesis will focus down to only the 

target-centric approach. 

 



3 

 

1.1.2 Lead Compound Selection and Optimisation 

Lead compounds are those which were shown to bind the identified target or have an 

effect in phenotypic assays. Early safety tests are then preformed on each lead in an 

attempt to ensure the drug will be successfully absorbed into the bloodstream, 

distributed to the site of action, metabolised effectively, excreted from the body and is 

nontoxic. Any leads which demonstrate these properties are then optimised, with 

hundreds of different variants of the compound produced and retested, and the most 

promising one is selected as the drug candidate (PhRMA, 2007). 

 

1.1.3 Preclinical Testing 

The European Medicines Agency (EMA) and US Food and Drug Administration (FDA) 

require each candidate drug to undergo extremely thorough testing before it can be 

deemed safe enough to be tested on humans. Tests are carried out in vitro, in the lab, 

and in vivo, using cell cultures and model organisms (PhRMA, 2007) to ensure the 

identified target is non-essential and non-toxic. 

Typically two species are used in animal studies – one rodent and one non-rodent (Bode 

et al., 2010). The primary model for genetic studies has traditionally been the mouse, 

which is ideal for studying single mutations but limited as a model for complex human 

disease. Human disease is generally polygenic, but genetic manipulations of mice 

generally test the effect of only a single major gene. Additionally, diseases which occur 

spontaneously in humans must be induced in mice. For the non-rodent model, dogs 

(Karlsson and Lindblad-Toh, 2008) and the minipig are considered to be favourable 

models due to their relative genetic and physiological similarities to man and 

applicability to many experimental studies. For example, the minipig is considered an 

advantageous model for general toxicology studies, particularly in regard to the 

cardiovascular system, due to its comparatively similar biology to humans (Bode et al., 

2010). 

 

1.1.4 Clinical Trials 

If a candidate drug still appears promising after preclinical trials, its safety and efficacy 

must then be tested in humans. Phase I clinical trials test the drug in a small group of 

healthy volunteers to determine whether the compound is safe in humans. Phase II trials 

test the drug on a small group of patients with the disease or condition under study to 

examine any side effects or risks associated with the drug. If the drug continues to show 

promise, Phase III trials will be launched, testing the drug against placebos on a large 

group of patients to show its safety and efficacy  (PhRMA, 2007).  
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After completion, if findings demonstrate the medicine is both safe and effective, the 

EMA or FDA will review the study and, upon approval, allow the drug to be 

manufactured for the treatment of patients (PhRMA, 2007). Selecting the right target 

with potentially druggable features should reduce attrition in these trials due to aspects 

such as drug target potency and selectivity. 

The focus of this thesis is on the very beginning of this pipeline: the identification of 

molecular targets for new drugs. 
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1.2 Challenges Facing the Pharmaceutical Industry 

With the average drug taking 13 years to develop, at an ever increasing cost, a main 

focus for the pharmaceutical industry is reducing the time and cost of getting successful 

drugs to market (Buchan et al., 2011).  

Despite the pharmaceutical industry as a whole spending an estimated US$67.4 billion 

on R&D in 2010, compared to US$47.6 billion in 2004 (PhRMA, 2011), the rate of 

innovation has remained alarmingly stagnant (Figure 1.2). The estimated capitalized 

cost per approved new small molecule $1318 million, with an approved biological 

product costing nearly the same at $1241 million (DiMasi and Grabowski, 2007). A 

constant of around 30 new molecular entities (NMEs) are approved each year (Lindsay, 

2003), with around 18 targeting human proteins, and, of these, only around four of these 

are novel target drugs (NTDs) which act on previously unexploited targets encoded by 

the human genome (Rask-Andersen et al., 2011).  

 

Figure 1.2: Rise in average drug development costs from 1990 to 2003. 

Despite enormous increases in spending in novel technologies, R&D productivity has decreased since the 

mid-1990s. This is measured by the number of approvals or original Investigational New Drug (IND) 

applications received by the FDA per dollar spent (from Ashburn and Thor, 2004, Figure 1). 

The rising cost of R&D can be attributed to several factors. Firstly, most of the “low-

hanging fruit”, or easily discovered drugs, have already been exploited leaving only 

those drugs which are harder to discover. Additionally, R&D efforts have been 

increasingly focused towards more complex diseases, for which drug discovery is much 

harder (Malik, 2009). 

Trials have also become longer, involving more volunteers, making them more costly 

for each compound. In addition, there has been an increase in agents reaching clinical 

studies, with 2,700 agents investigated in 2008 versus 2000 agents in 2003, but no 
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notable increase in the number of drugs approved. Therefore clinical trials have higher 

failure rates than previously, and with 50% of all drugs which reach Phase III 

development failing, this is extremely costly. For example, in 2006 Pfizer stopped 

development of a cholesterol drug, torcetrapib, after investments of $1 billion because 

they found it actually increased the risk of cardiac problems (Malik, 2009).  

The pharmaceutical industry is constantly pushing for new drugs, not only to provide 

new treatments for patients but also to replace the high numbers of blockbuster drugs 

which are losing patent protection. These drugs have sales in excess of US$1 billion 

annually and generate the majority of the income of pharmaceutical firms, so profits 

will decrease when their patents expire and they face generic competition. 

Consequently, new approaches to drug discovery need to be considered to respond to 

increasing pressure to deliver new products (Malik, 2009). 

1.3 Drug Types 

There are two kinds of drugs currently marketed: small molecule drugs and 

biotechnology products. Both are used for the treatment, prevention or cure of disease in 

humans. Small molecular weight drugs are chemically synthesised, with well defined 

structures, and far less complex than the large biological products, derived from living 

material of humans, animals or microorganisms. Monoclonal antibodies and fusion 

proteins are common types of therapeutic biotechnology (FDA, 2009).  

 
Figure 1.3: FDA approvals of new chemical entities and new biological entities from 1950-2008. 

Timeline displays the approval of 1,103 small molecules and 119 biologics. The surge observed around 

1997 can be attributed to a clearing of the backlog of new drug applications, possibly due to accelerated 

reviewing of applications due to the passing of the Prescription Drug User Fee Act (from Figure 1a, 

Munos, 2009). 

The majority of approved drugs are classed as small molecules, as can be seen in Figure 

1.3. Novel target drugs (NTDs) act on previously unexploited targets from the human 

genome. Although over 60% of NTDs in the last two decades have been small molecule 

drugs, biologics are strongly emerging therapeutics, with monoclonal antibodies 

representing 20% of NTDs between 2001 and 2010 (Rask-Andersen et al., 2011). 
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Common routes of small molecular drugs administration include oral, sublingual 

(absorption through the blood vessels under the tongue), rectal, topical and parenteral 

(intravenous, intramuscular, subcutaneous). Although oral administration is the most 

common and convenient route, other routes offer benefits in specific circumstances, for 

example where a patient is unable to swallow, to reduce systemic side effects whilst 

managing localised disease, if an immediate or delayed onset of action is required or to 

allow the use of drugs which are poorly absorbed, inactive or ineffective if given orally 

(NursingTimes, 2007). The majority of biologics need to be delivered by injection, 

causing complications with compliance and effectiveness, although orally bioavailable 

formulations are in development (PRNewswire, 2011). 

 

1.3.1 Estimates of Drug-likeness 

Orally administered small molecule drugs, not derived from natural products, usually 

comply with the ‘rule of five’. Lipinski et al.’s rules state that poor adsorption or 

permeation of a compound is more likely when there are more than 5 hydrogen bond 

donors and 10 hydrogen bond acceptors, the molecular mass is higher than 500 Da and 

the lipophilicity is high (with a Log P value greater than 5). Excessive numbers of 

hydrogen bond donor and acceptor groups will hinder permeability across the 

membrane bi-layer, as will excessive compound size. Excessive lipophilicity will result 

in absorption problems due to poor aqueous solubility, preventing the flux of drug 

across the intestinal membrane into the blood (Lipinski et al., 2001). These rules only 

apply to the passive diffusion of compounds through cell membranes and are not 

applicable to compounds which are actively transported by transporter proteins. 

Although originally only intended to predict the absorption of compounds, conformance 

with the rule of five can also be used to predict the overall drug-likeness of a compound 

(Leeson, 2012). 

Although the rule of five is predictive of bioavailability, it has limitations. Up to 16% of 

oral drugs violate at least one of the criteria and several high profile drugs fail more than 

one (Bickerton et al., 2012), such as montelukast, an oral treatment for chronic asthma 

(Young, 2001). By filtering compounds using the rule of five, undesirable compounds 

could be considered drug-like by only just meeting the four criteria whereas better 

compounds could fail by missing just one of the cut offs (Bickerton et al., 2012).  

A recently proposed method (Bickerton et al., 2012) has been developed to quantify 

drug-likeness. Called the quantitative estimate of drug-likeness (QED) it produces a 

value between 0 (unfavourable) and 1 (favourable) based on the desirability of the 

compounds properties, rather than the basic pass or fail provided by the rule of five. It 

takes into account the number of aromatic rings and rotatable bonds in a molecule, the 

polar surface area (measuring hydrophilicity) and the number of groups in the molecule 
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known to cause toxicity in addition to eight physical properties proposed to be 

important for oral drugs (Bickerton et al., 2012, Leeson, 2012).  

  

Figure 1.4: Assessment of drug-likeness of FDA approved oral drugs using the rule of five and QED 

methods. 

a) The number of FDA approved oral drugs that fail or pass the rule of five, based on a set of 771 drugs. 

b) Chart showing the distribution of drug-likeness for these same drugs calculated using the QED method. 

Some very drug-like molecules, with a score over 0.6, fail the rule of five and some very un-drug-like 

molecules, with scores below 0.4, pass it (from Figure 1, Leeson, 2012). 

A comparison of the two methods can be seen in Figure 1.4, generally showing 

consensus at the extremes of the scale, with most drugs with very high or very low QED 

scores passing and failing the rule of five respectively. However some notable 

differences are seen in the middle of the scale, showing that some drugs which failed the 

rule of five are considered to be very drug-like using the QED method. 

The QED method is highly customisable, allowing users to set relative weightings for 

properties as desired. Importantly, it allows a threshold of drug-likeness to be set, rather 

than just a pass or fail, and can be applied to sets other than oral drugs, such as those 

administered intravenously, therefore providing possibly the best estimate of how drug-

like a compound is to date (Leeson, 2012). 
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1.3.2 Small Molecular Drug Targets 

Agonist small molecular drugs generally mimic the endogenous ligands of a protein, 

binding in the same pocket, whereas antagonist drugs block the action of agonists. 

Phosphodiesterase type 5 inhibitors, such as sildenafil (trade name Viagra) in Figure 

1.5, are examples of chemical compounds with very similar structures to the 

endogenous molecule with which it competes, cyclic guanosine monophosphate 

(cGMP). Sildenafil acts as substrate analog, inhibiting the catalytic site of 

phosphodiesterase and therefore preventing the degradation of cGMP. Elevated cGMP 

causes smooth muscle tissues to relax, resulting in vasodilation and increased blood 

flow (Corbin and Francis, 2011). 

 

Figure 1.5: The catalytic domain of human phosphodiesterase 5A complexed with sildenafil. 

Enzyme shown in red, ligands coloured by element include sildenafil, glycerol and magnesium and zinc 

ions. Grey, carbon; blue, nitrogen; red, oxygen; yellow, sulphur; green, magnesium; and dark red, zinc 

(PDB ID: 1TBF, Zhang et al., 2004). 

A ‘one drug, one target’ assumption must be made during drug development in order to 

optimise binding to a disease relevant protein, although this is rarely the case and a 

single drug will often have multiple molecular targets. Even so, a high level of 

specificity for the intended target is generally required, both for efficacy and in order to 

reduce the chance of any side effects (Johnson, 2009). 

For example imatinib, used to treat chronic myeloid leukaemia and gastro-intestinal 

stromal tumours, targets inactive conformation of ABL tyrosine kinase and shows high 

specificity for its target, more so than drugs which target the active state, such as 

dasatinib (Johnson, 2009). Even so, imatinib shows specificity for tyrosine kinases 

other than ABL. The off target effects on KIT and PDGFR allow imatinib to be 

employed as a treatment for gastrointestinal stromal tumours caused by mutations of 

KIT or PDGFRα (Lee and Wang, 2009).  
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In another example, some drugs, such as antipsychotic drugs (for example 

chlorpromazine), actually benefit from their promiscuity, becoming more effective 

through modulation of a spectrum of receptors (Rask-Andersen et al., 2011, Bianchi, 

2010). Targets such as dopamine and serotonin receptors produce the therapeutic effect 

on mood (Kusumi et al., 2000) but chlorpromazine’s multitude of other targets result 

side effects such as mild antihistaminic activity, lactation and reduced gonadotropin 

levels, dry mouth and muscular disorders (Walsh and Schwartz-Bloom, 2004). 

Similarly, the identification of a single druggable target can result in the production of 

many different drugs, since it is possible for multiple compounds to target the same 

single protein binding site but produce different therapeutic effects. For example, 

aspirin irreversibly inhibits cyclooxygenase enzymes, whereas ibuprofen and naproxen 

bind reversibly. All three molecules bind at the same substrate site, but aspirin’s 

irreversible molecular mode of action translates into a long-lasting effect in platelets, 

which are unable to resynthesize new enzymes, causing additional functionality as an 

antiplatelet drug. Many different biochemical features can contribute to the specific 

functional response of a drug, including residence time; irreversible binding; transient 

binding; uncompetitive inhibition, in which binding only occurs to the enzyme-substrate 

complex; and non-competitive inhibition, where binding is equally successful whether 

the substrate is bound or not (Swinney and Anthony, 2011). 

 

1.3.3 Biological Therapeutics 

Biological therapeutics, also known as biologics, consist of a variety of different 

engineered proteins with medicinal applications. Monoclonal antibodies are useful in 

the treatment of disorders which cause the target to be expressed at higher levels, such 

as cancer and inflammatory diseases. One such example is the over expression of 

receptor tyrosine kinases in tumours (Berg et al., 2007).  

Elevated levels of epidermal growth factor receptor (EGFR), a member of the erbB 

family of receptor tyrosine kinases, are observed in some human epithelial cancers. 

EGFR consists of an extracellular domain which binds ligands, a transmembrane 

domain and an intracellular tyrosine kinase domain. The presence of these receptors 

increases the likelihood that the cell will inappropriately grow and divide, since upon 

activation EGFR initiates signal-transduction cascades involved in cell proliferation and 

survival. Blocking activation of these receptors is particularly effective in preventing 

tumour growth since the receptor is capable of dimerization even in the absence of EGF 

(Kirkpatrick et al., 2004).  
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Figure 1.6: The EGFR pathway and cetuximab’s mode of action.  

This simplified illustration of the EGFR signal transduction pathway shows how cetuximab blocks the 

receptor from binding a ligand and prevents dimerization. Gefitinib, an agent that inhibit the tyrosine 

kinase activity of EGFR, is also shown. MAPK, mitogen-activated protein kinase; TGF-α, transforming 

growth factor-α; TK, tyrosine kinase domain (from Figure 1, Kirkpatrick et al., 2004). 

Cetuximab is a recombinant, human/mouse chimeric monoclonal antibody used in the 

treatment of large bowel, head and neck cancers. As seen in Figure 1.6, cetuximab 

competes with EGF for the extracellular binding site of EGFR, inhibiting the receptor 

by blocking the change in conformation which exposes the dimerization arm and, 

therefore, prevents the EGFR-controlled pathway from being initiated (Berg et al., 

2007, Kirkpatrick et al., 2004). Therapeutic antibodies are generally composed of 

mouse antibodies with the substitution of human Fc regions in order to reduce the host’s 

anti-antibody immune response (Hwang and Foote, 2005).  

 

1.4 The Druggable and Biopharmable Genome 

1.4.1 Genomic Sequencing 

In order to predict the druggable and biopharmable genes in an organism, a thorough 

understanding of its genome is required. The initial sequencing of the human genome 

(Venter et al., 2001, Consortium, 2001) and the complete (~99%) updates (Human 

Genome Sequencing, 2004), along with transcriptomics and  gene prediction 

improvements, provide the essential basis for identifying gene and protein sequences 

with druggable features. In the pre-genomic era only phenotypic assay approaches to 

drug discovery could be employed, however, faster target centric approaches are now 

able to exploit these significant advances in our knowledge (Lander, 2004). 
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As well as providing a comprehensive reference for human genomic studies, the 

sequencing of the human genome has allowed the biology of model systems to be 

related more accurately to humans. Other key genomes sequenced included mouse, dog, 

rat and chimpanzee (Lander, 2011) allowing the best model organisms for toxicology 

and efficacy testing to be selected based on homology with man. For example, drug 

metabolism mediated by cytochrome P450 (CYP) enzymes can be modelled by animal 

drug-metabolising systems. As there are many subfamilies of CYP enzymes, multiple 

model organisms are needed to ensure the best fit for each family. For CYP1A-

mediated pathways most commonly used experimental models were deemed 

appropriate, however other pathways required close homologues to be selected. The dog 

was identified as a good model for processes depending on the CYP2D, Maccacus 

rhesus to represent CYP2C and CYP3A seemed to be well modelled by pig or minipig 

homologue CYP3A29 (Zuber et al., 2002).  
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1.4.2 Determining Target Druggability  

Although a therapeutically relevant target must be disease modifying (Sakharkar and 

Sakharkar, 2007), in theory the chemical tractability of a protein family can be 

determined by the presence of protein folds that enable interactions with drug-like 

compounds. Cellular location should also be considered since 60% of current drug 

targets are located at the cell surface, compared with only around 22% of all human 

proteins (Overington et al., 2006). Similarly, to be exploitable by biotechnology the 

target must be present in an accessible location, either extracellular or pericellular, since 

antibodies cannot enter cells.  

Proteins without these structural features are unlikely to be modulated by 

pharmaceuticals, so, although a protein may control an interesting pathway, if it does 

not possess a druggable domain it cannot be easily targeted. Likewise, a protein may 

have a druggable structure, but modulating its function may not provide any therapeutic 

benefit. Therefore actual drug targets will be a subset of druggable proteins, as 

visualised in Figure 1.7, the validation of which will come with successful clinical use 

(Russ and Lampel, 2005). It is also worth noting that this view of druggability only 

represents the current state of our abilities: domains which are druggable now, not those 

that additionally might be in the future, and therefore will evolve over time (Lander, 

2004). 

 

Figure 1.7: Drug targets are the overlap between chemically tractable or biopharmable genes and 

disease modifying genes.  

Areas containing drug targets are represented with an asterisk (adapted from Figure 2, Hopkins and 

Groom, 2002) 

One approach to determining druggability is to assess the presence and/or number of 

ligand binding domains on potential targets, giving an indication of the number of 

Human genome 

Chemically tractable 

genes 

Biopharmable 

genes 

Disease 

modifying genes 

* 

* 

* 
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points where small molecule drugs could potentially act. As protein binding sites 

usually exist due to functional necessity, most successful drugs gain activity through 

competing for binding sites with endogenous small molecules, making the potency with 

which the drug binds to its target critical (Hopkins and Groom, 2002).  

Another approach is to identify the protein domain most likely to have made an existing 

target druggable and assume other proteins with this domain will share these 

characteristics. If the identified domain binds and interacts with drugs, it stands to 

reason proteins with these domains could be open to drug interference. Similarly, 

proteins in the same family of (or which share close homology with) known drug targets 

are very likely to have shared function and therefore may also be open to modulation by 

similar small molecules.  

Although a few drugs exist which bind to either ribosomes or DNA, or have unknown 

modes of action, most bind to and inhibit proteins (Overington et al., 2006). The most 

commonly targeted protein classes are shown in Figure 1.8.  

  
Figure 1.8: Biochemical classes of marketed small molecule drug targets. 

The majority of drugs marketed target enzymes, G-protein-coupled receptors (GPCRs) or ion channels 

(from Figure 1, Hopkins and Groom, 2002). 

Considering the properties of known drug targets may be beneficial in understanding 

what makes a protein druggable. GPCRs, a highly targeted family, are present in almost 

every organ system representing one of the most universal ways in nature to transmit 

signals into cells. They therefore present a wide range of opportunities as therapeutic 

targets for many conditions (Filmore, 2004). It should be also be noted that many 

GPCRs are unlikely to be useful as drug targets since they are not involved in disease 

processes, for example olfactory GPCRs. 

GPCRs are located at the interface between a cell’s internal and external environments, 

making them accessible for modulation. As they have a range of natural ligands, 

including amines, ions, nucleosides, lipids, peptides and proteins, the composition 

compound targeting each individual receptor can vary, allowing for greater specificity. 

A conformational change occurs upon binding a ligand at the active site, signalling the 
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coupled G protein inside the cell to release components which control various cellular 

mechanisms (Filmore, 2004). 

 
Figure 1.9: Non-rhodopsin GPCR structure. 

Overlay of the structure of 20 non-rhodopsin GPCRs (left) and merged binding sites (right). Ribbon 

structures are shown, extracellular side up, with almost perfect helical overlay. Two reference inverse 

agonists, carazolol (2RH1, b2AR) and ZM241385 (3EML, A2AR), are shown as magenta and yellow 

spheres in the binding sites (from Figure 1, Kolb and Klebe, 2011). 

As seen in Figure 1.9, the structure of the GPCRs appear to be very similar, supporting 

the assumption that proteins in the same family are similar and, therefore, will have 

similar functionality. This means that any remaining, untargeted GPCRs could represent 

exploitable drug targets, although some receptors are unlikely to provide a therapeutic 

use, for example the olfactory receptors. Additionally, the structure of already identified 

drug target families could be used as a basis for identifying new druggable targets 

through homology searches. 

 

1.4.3 Known Drug Targets  

Over 21,000 marketed drug products are recognised (defined as the active drug 

ingredient in association with inactive ingredients in tablet, capsule, cream or liquid 

form) (Overington et al., 2006). However when duplicate active ingredients and other 

additional supplements were taken into account by Rask-Andersen et al. in 2011, only 

1,542 unique drug compounds were identified (Rask-Andersen et al., 2011) from the 

DrugBank database (Knox et al., 2011). After removing 225 drugs with no known 

target, 1,236 protein targets were assigned to the remaining 1,317 drugs. Upon the 

further removal of drugs with no known human target and those with only a non-

therapeutic target, for example drug metabolising cytochrome P450 enzymes, only 989 

drugs acting on 435 human, therapeutic effect-mediating targets remained (Rask-

Andersen et al., 2011). As of 2006, only 166 marketed drug products were biologicals, 

with just 15 human proteins targeted by monoclonal antibodies and only 9 marketed 

drug targets modulated by both small molecule and biological drugs (Overington et al., 

2006).  
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With an estimated 22,000 protein coding genes (Pertea and Salzberg, 2010), and, if one 

includes post-translational modification and complex assembly, an even larger number 

of different protein isoforms (Hopkins and Groom, 2002) few proteins are currently 

exploited. Since 584 human proteins have been found to be associated with 

cardiovascular disease alone (Johnson et al., 2005) it is clear that the number of 

currently exploited targets is comparatively low, so identification of novel protein 

targets should aid drug development. 

 

1.4.4 The Druggable Genome 

Identifying all druggable genes in the human genome has been attempted before. 

Estimates of the number of currently known human drug targets range from ~200-400, 

depending which methods were used and how the targets were defined (Rask-Andersen 

et al., 2011). In 1996, Drews and Ryser were the first to present an overall estimate of 

the number of predicted drug targets, identifying 483 targets using drugs listed in the 

ninth edition of The Pharmacological Basis of Therapeutics and 5,000-10,000 potential 

targets on the assumption that the human genome contained 300,000 genes (Drews, 

1996), shown in Figure 1.10.  

 
Figure 1.10: Comparing previous known human drug targets and druggable target estimates in the 

context of the perceived genome space.  

Data from (Drews, 1996, Hopkins and Groom, 2002, Russ and Lampel, 2005, Imming et al., 2006, 

Overington et al., 2006, Rask-Andersen et al., 2011). Human genome size was assumed to be the same 

from the Russ and Imming publications as Overington and Rask-Andersen genome size the same as the 

current human genome build. 

Six years later, in 2002, Hopkins and Groom revised this, identifying 120 targets of 

currently marketed small molecule drugs and 399 molecular targets capable of binding 
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rule of five compliant compounds with affinities below 10 µM, regardless of whether 

these drug-like ligands were actually approved. In contrast to the previous work, they 

based their estimate of the druggable genome on the predicted human proteome at 

21,688 and the assumption that functional similarities are conserved within protein 

families. Therefore, if one member is able to bind a drug, other members will also likely 

be able to bind similar compounds. Using this reasoning they predicted 3,051 human 

genes code for a protein with a precedent for binding a drug-like molecule and, using 

the yeast genome as a model, the overlap of those related to disease (around 2–5% of 

the genome) suggests 600-1,500 human genes could be pharmologically exploitable by 

small-molecule drugs (Hopkins and Groom, 2002). 

In 2006, Russ and Lampel released an update to Hopkins and Groom’s work, and by 

using an updated version of the InterPro domains set produced an estimate of 3,533 

druggable genes, 482 more than identified in 2002. By removing olfactory GPCRs, the 

estimate was reduced to 3,050 genes. However, to address the problem of over 

prediction, 182 equivalent Pfam domains were manually chosen from the 108 InterPro 

definitions, which resulted in a count of 2,917 genes after removing sensory receptors 

(Figure 1.10) (Russ and Lampel, 2005). 

Although neither published a druggable estimate, in 2006 Imming et al. produced a 

figure of 218 targets of approved drugs (Imming et al., 2006) and Overington et al. 

supplied 266 human proteins as targets, through a systematic review of the US Food and 

Drug Administration (FDA) Orange Book and the Centre for Biologics Evaluation and 

Research (CBER) website (Overington et al., 2006). The same year the publicly 

available DrugBank database was launched (http://www.drugbank.ca/), drawing heavily 

from these earlier datasets, listing drug-target interactions, accession numbers and 

pharmacological agents (Wishart et al., 2008). 

Rask-Andersen et al. analysed the complete data set of pharmacological agents from the 

DrugBank database as of May 2009, focusing on individual genes, without filtering 

with regard to gene family redundancies or for rule of five compliant molecules. This 

resulted in the identification of 435 known human drug targets, 989 unique marketed 

drugs and 2,242 known drug-target interactions. Through manual curation of the 

DrugBank database, removing drugs without known protein targets (for example, those 

which act on DNA, dietary supplements or those with unknown targets), those 

administered as prodrugs (as these are metabolised to the active form, which is included 

if relevant) and those acting on non-human targets (such as antibiotics, antiparasitics 

and antifungals) a list of 1,092 pharmacological agents acting on 1,044 human protein 

targets was produced. Non-therapeutic targets were then removed through validation of 

each drug, drug target and interaction using current medical literature and public 

databases, identifying therapeutically irrelevant targets and side effect mediating targets 

to produce the final, strict dataset of 435 known effect mediating drug targets (Rask-

Andersen et al., 2011). 

http://www.drugbank.ca/
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Each target’s encoding gene was also assigned a class according to their molecular 

function. The largest group, comprising 44% (193) of known human drug targets, is the 

receptor category, most commonly G protein-coupled receptors (GPCRs), usually the 

target of anti-hypertensive and anti-allergic drugs. The second largest receptor target 

class, ligand-gated ion channels, are usually the target of sedatives, and the third, 

receptor tyrosine kinases, are targeted by anticancer drugs. The next largest group 

(29%) are enzymes, with the top three largest targets being hydrolases (EC 3), 

oxidoreductases (EC1) and transferases (EC 2). Targeted enzymes are most commonly 

soluble proteins (78%) rather than membrane associated. The third largest known target 

class, with 15% of the human targets, are transporter proteins, which includes voltage 

gated ion channels (Rask-Andersen et al., 2011). 

Protein-protein interaction networks (also called interactome networks) have been a 

recent focus of network biology and drug-target interactions can also be studied in this 

context, providing a new avenue for target prediction. A drug-target network, viewed in 

Cytoscape, of the 989 drugs and 435 protein targets identified by Rask-Andersen et al. 

showed that almost half of the drugs on the market interact with similar targets, 

producing large networks which exploit only a limited part of the proteome. Therefore 

the smaller NTD networks are of particular interest as they often represent novel 

molecular mechanisms (Rask-Andersen et al., 2011). 

 

1.4.5 The Secretome and Biopharmable Genome 

Secreted proteins often circulate the body, gaining access to most organs and tissues, 

and many factors act as therapeutic agents. Secreted proteins play important roles in 

many different biological functions, such as signalling pathways, blood coagulation, 

structural scaffolding, enzymatic action and immune defence. Extracellular matrix 

(ECM) molecules also interact directly with cell surface receptors, therefore improved 

knowledge of the secretome could unveil novel therapeutics as well as drug targets 

(Huxley-Jones et al., 2008, Xu, 2007). Secreted proteins have high specificity for 

receptors, making them attractive candidates for therapeutics. However downstream 

components of receptor signalling cascades are often shared, so targeting processes with 

these agents is still expected to produce unwanted side effects. Similarly, although 

secreted proteins have the benefit of acting at low concentrations, they have limited oral 

availability and short half-lives, requiring frequent administration (Bonin-Debs et al., 

2004). 

Classically secreted proteins can be identified based on specific signatures at the amino 

terminus of the protein, known as signal peptides (Bonin-Debs et al., 2004). Signal 

peptides function like a postal address, identifying proteins destined for secretion or for 

specific organelle for further processing. When proteins reach their targeted locations 

these signal peptides are cleaved off and degraded (Choo et al., 2005). Not all proteins 
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display a signal peptide sequence in their primary structure, nor are they all released 

through the classical endoplasmic reticulum-Golgi pathway (Prudovsky et al., 2003) but 

signal peptides allow predictions of the specific destinations of the proteins that do. 

Although the ECM can act as a barrier to effective drug action, its numerous 

components (Figure 1.11) also represent possible therapeutic targets. Many drugs in 

development target components of the ECM (Huxley-Jones et al., 2008), for example 

firategrast is an orally administered monoclonal antibody therapy currently in 

development as a treatment for multiple sclerosis. Acting against α4β-integrin, a 

glycoprotein of the ECM, Phase II trials have shown firategrast reduces trafficking of 

mononuclear white blood cells across the blood brain barrier (Miller et al., 2012).  

 
Figure 1.11: Diagrammatic representation of the extracellular matrix.  

Depiction of all the major classes of extracellular matrix molecules (from Figure 1, Huxley-Jones et al., 

2008). 

The impact of existing secreted protein therapies has been huge, for example until the 

discovery of insulin for the treatment of diabetes mellitus in 1921 the diagnosis would 

have been incurable. It is estimated that 10% of human genes encode secreted proteins; 

however, deciphering the secretome and function of these proteins presents a major 

challenge due to the complexity of these protein classes. One approach is to screen the 

secretome of a model organism, such as zebrafish, in vivo and apply this to homologues 

in man (Xu, 2007). 

  



20 

 

1.5 Strategy to New Drug Discovery 

In addition to new scientific approaches to drug discovery, new business models are 

increasingly important. One key approach is to increase collaboration between 

pharmaceutical companies and other key players in healthcare, such as academics and 

small enterprises. This would enhance competitiveness in pharmaceutical industry for 

the benefit of patients and scientists. Public-private partnerships (PPP) involving both 

for-profit companies and non-profit institutions aim to encourage these collaborative 

efforts, supporting drug discovery and development (Goldman, 2012). An example 

collaboration, the Medicine for Malaria Venture and Novartis, has successfully 

launched and distributed a malaria treatment, Coartem Dispersible, formulated 

especially for children (MWV, 2012). The largest PPP in life sciences R&D is the 

European Union initiative called the Innovative Medicines Initiative (IMI) which hopes 

to address bottlenecks in the drug development process and develop new tools for 

predicting drug safety and efficacy (Goldman, 2012).  

Precompetitive research such as IMI does not reduce commercial advantage and, 

therefore, allows collaboration and pooling of resources between pharmaceutical 

companies. This facilitates the desire of many pharmaceutical companies such as GSK 

to promote public domain discovery systems involving open-access tools and promotes 

collaboration with partners outside of industry. IMI provides neutral platform for 

transparent exchanges between researchers to support the development of new 

medicines in a non-competitive environment for the benefit of both industry and society 

(Goldman, 2012). The project described in this thesis will contribute potentially 

druggable and biopharmable targets to OpenPHACTS, an IMI funded project. 

OpenPHACTS (http://www.openphacts.org) is a three year project, ending in March 

2014. The consortium contains 23 partners from a wide range of backgrounds, including 

academia, pharmaceutical (including GSK) and biotechnology companies. The project 

aims to reduce the barriers between drug discovery in industry and academia by 

providing an open access innovation platform, called Open Pharmacological Space. 

This will comprise of data, vocabularies and infrastructure needed to accelerate drug-

oriented research, which is open to all users and available in the public domain.  

Similarly, the use of open source methodologies can accelerate the discovery process, 

allowing the reuse of existing resources and preventing wasted time and effort. The 

accessibility of open source can ultimately lead to more people becoming involved and 

an inevitably faster rate of innovation. Besides speed, another advantage is the 

transparency of the process, making open source methods easily understood and, 

therefore, adapted to evolving needs. Since everything is available on the web, an open 

soruce project can be picked up in the future by those not originally involved, meaning 

it will not cease in the event of the graduation of a student, termination of funding or 

http://www.openphacts.org/
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departure of an investigator.  Freely available software is also subject to extensive and 

continuous peer review through commenting systems (Woelfle et al., 2011).  

Research conducted in this manner has the potential for significant impact on human 

health, with an example of successful open research seen in the improvement of an off 

patent drug, praziquantel (used in the treatment of the parasitic infection 

schistosomiasis), to produce a purer product at a lower cost (reviewed in Woelfle et al., 

2011). 
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2 Aims and Objectives 

This project has a number of aligned aims: 

1. Druggable genome prediction 

2. Biopharmable genome prediction 

3. Pipeline production 

Most importantly, it aims to produce estimates of all human genes likely to be 

druggable or biopharmable. These predictions can then be compared to known, 

currently approved small molecule drug and biotechnology targets. This will be 

achieved using: 

 open source software  

 publically available data 

The work of Hopkins and Groom in 2002 will be replicated a decade on to produce the 

first prediction of the druggable genome. Fundamentally, this should:  

 draw comparisons between findings 

 produce a list of gene and protein identifiers for reference (not included in the 

original publication) 

Druggable domain definitions will then be updated programmatically in an attempt to: 

 minimise the required manual curation effort  

 provide easily updatable predictions  

To align produced predictions with existing drug target data, target classes will be 

predicted using regular expressions and predicted targets will be annotated with their 

ChEMBL target class (where available). 

Predictions of the biopharmable genome will be produced, expanding on work carried 

out by Kieran Todd and Alan Lewis at GlaxoSmithKline to: 

 draw comparisons between the druggable and biopharmable genome estimates 

 evaluate the success of signal peptide and transmembrane region prediction tools 

The pipeline should also be easily updated, therefore it aims to produce: 

 an easy to use, fully automated prediction pipeline 

 well documented scripts which can be modified and updated in the future 

Since the human genome assembly is being constantly revised, first in class drug targets 

constantly being discovered and our knowledge of disease ever expanding others should 

be able to easily replicate this work in the future.  
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3 Materials and Methods 

3.1 Programming Languages 

All research was carried out using scripts written in Perl version 5.8.5 (perl.org), which 

can be found in the uploaded ZIP file under the ‘scripts’ directory. Most of the scripts 

make use of the core modules in order to be as portable as possible. However, in order 

to query a local ChEMBL database instance the DBI module (dbi.perl.org) is required 

and in order to parse the DrugBank XML database file the XML-TreeBuilder module 

(search.cpan.org/~jfearn/XML-TreeBuilder-4.1) is required. 

All graphs were plotted using R version 2.14.0 (r-project.org). The scripts used can be 

found in the uploaded ZIP file under the ‘analysis’ directory. The ggplot2 package 

(cran.r-project.org/web/packages/ggplot2, Wickham, 2009) is required to produce bar 

plots, whilst ROC curves require the included rocit function (courtesy of Dr Michael 

Cauchi, Cranfield University), and Venn diagrams require the VennDiagram package 

(cran.r-project.org/web/packages/VennDiagram, Chen and Boutros, 2011). 

3.2 Mutual Resources 

The ChEMBL (www.ebi.ac.uk/chembl, Gaulton et al., 2012) and DrugBank 

(www.drugbank.ca, Knox et al., 2011) databases were used as resources for known 

targets of approved small molecule and biotechnology drugs. 

BioMart’s (www.ensembl.org/biomart/martview, Kinsella et al., 2011) web service was 

used to query Ensembl human genome assembly GRCh37.p6 via XML using various 

filters. The ‘protein coding’ filter was used to generate a universe of protein coding 

genes, removing pseudogenes, which contained 21,405 genes and 96,535 proteins. This 

collection of proteins was used in all predictions/comparisons/analysis unless otherwise 

stated and can be found under the ‘outputs’ directory of the attached ZIP file in the 

‘universe’ folder. 

3.3 Chemically Tractable Resources and Filters 

Protein domains from InterPro (www.ebi.ac.uk/interpro, Hunter et al., 2012) and Pfam 

(pfam.sanger.ac.uk, Punta et al., 2012) were used to predict genes which have drug 

binding properties. InterPro is a consortium of 11 major signature databases, allowing 

predictions of structure, function or family membership to be made based only upon 

sequence. Pfam is a member of this consortium, but as it clearly defines domains based 

on multiple sequence alignments and profile hidden Markov models it should, therefore, 

provide more constrained estimates.  
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A synopsis of all of the filters used in BioMart queries to produce the chemically 

tractable predictions can be seen in Figure 3.1. 

A list of druggable InterPro domains was provided in (Hopkins and Groom, 2002), and 

an up to date version of this list including replacements (Table 3.1) was used as a 

BioMart filter and is labelled as (3) in Figure 3.1.  

The Protein Data Bank (PDB) (www.pdb.org, Berman et al., 2000) web service was 

used to determine which of the associated Pfam domains have an experimentally 

determined structure with a free ligand via an XML query with Perl managed output. 

Figure 3.1: Generation of the nine BioMart query filters for estimating the known (1 & 2) and 

potentially chemically tractable target lists. 

Bracketed numbers indicate an input which is used as a filter in a BioMart query, large arrows indicate 

the processing of the original input using scripts (included) or unix commands, smaller arrows indicate 

the output of the previous script is processed. ChEMBL is a local database, DrugBank is an XML file. 

  

 tools/drugbank_uniprot_linker.pl inputs/raw/linker.txt 

tools/drugbank_xml_parser.pl  
DrugBank DB (2) UniProt IDs 

tools/interpro_checker.pl (+ manual update) 

 Hopkins & Groom list (3) InterPro IDs 

cut –f 5 

cut –f 1 
runner.pl biomart_xml.pl 

ChEMBL UniProt (1) 
(4) InterPro IDs 

(5) Pfam IDs 

Output 

cut –f 5 

cut –f 1 
runner.pl biomart_xml.pl 

DrugBank UniProt (2) 
(6) InterPro IDs 

(7) Pfam IDs 

Output 

(8) / (9) Pfam IDs  
(with known ligands) 

tools/pfam_hasligands_printer.pl  cut –f 3 
 

Pfam IDs (5) / (7) 

tools/chembl_query_all.pl  

 tools/chembl_output_reader.pl ChEMBL DB (1) UniProt IDs 
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Table 3.1: Modifications to the original Hopkins and Groom list of InterPro domains. 
 

Original name 

Original 

InterPro 

Accession 

 

Updated name(s) 

Updated 

InterPro 

Accession(s) 

 

Reason 

Cation channels IPR000636 Ion transport domain IPR005821 Replaced 

Neutral zinc 

metallopeptidases 

zinc-binding 

region 

IPR000130 Peptidase, metallopeptidase IPR006026 Replaced 

Domain in 

various γ-

carboxylases and 

other proteins 

IPR001870 Vitamin K-dependent gamma-carboxylase IPR007782 Manual 

update  

(false positive 

matches 

against 

B30.2/SPRY) 

SAM-binding 

motif 

IPR000051 MCP methyltransferase, CheR-type, SAM-

binding domain, C-terminal 

IPR022642 Manual 

update 

Neurotransmitter-

gated ion channel 

IPR001175 Neurotransmitter-gated ion-channel IPR006201 Replaced 

Neurotransmitter-gated ion-channel ligand-

binding 

IPR006202 Replaced 

Thioredoxin IPR000063 Thioredoxin domain IPR013766 Replaced 

Aldehyde 

dehydrogenase 

family 

IPR002086 Betaine aldehyde dehydrogenase IPR011264 Replaced 

Aldehyde dehydrogenase domain IPR015590 Replaced 

H+/K+- and 

Na+/K+-

transporting 

ATPase 

IPR000661 ATPase, P-type cation-transporter, C-terminal IPR006068 Replaced 

ATPase, P-type cation-transporter, N-

terminal 

IPR004014 Replaced 

ATPase, P-type cation exchange, alpha 

subunit 

IPR006069 Replaced 

Amino-acid 

permease 

IPR002027 Amino acid permease domain IPR004841 Replaced 

Amino acid permease, conserved site IPR004840 Replaced 

Na+/H+ 

exchanger 

IPR000676 Cation/H+ exchanger IPR006153 Replaced 

Na+/H+ exchanger IPR004709 Replaced 

Aminotransferase 

class-III 

pyridoxal-

phosphate 

IPR000954 Adenosylmethionine--8-amino-7-

oxononanoate aminotransferase BioA 

IPR005815 Replaced 

Aminotransferase class-III IPR005814 Replaced 

DNA-directed 

DNA polymerase 

family B 

IPR002064 DNA-directed DNA polymerase, family B IPR006172  Replaced 

DNA-directed DNA polymerase, family B, 

multifunctional domain 

IPR006134  Replaced 

DNA-directed DNA polymerase, family B, 

exonuclease domain 

IPR006133  Replaced 

Glyceraldehyde 

3-phosphate 

dehydrogenase 

IPR000173 Glyceraldehyde 3-phosphate dehydrogenase, 

active site 

IPR020830 Manual 

update 

Glyceraldehyde 3-phosphate dehydrogenase, 

NAD(P) binding domain 

IPR020828 Manual 

update 

Glyceraldehyde 3-phosphate dehydrogenase, 

catalytic domain 

IPR020829 Manual 

update 

Aromatic-ring 

hydroxylase 

IPR000733 Aromatic-ring hydroxylase-like IPR003042  Replaced 

Poly(ADP-ribose) 

polymerase; 

catalytic region 

IPR001290 Poly(ADP-ribose) polymerase, catalytic 

domain 

IPR012317 Replaced 

Aspartate and 

ornithine 

carbamoyltransfer

ase family 

IPR002029 Aspartate/ornithine carbamoyltransferase, 

Asp/Orn-binding domain 

IPR006131  Replaced 

Aspartate/ornithine carbamoyltransferase, 

carbamoyl-P binding 

IPR006132  Replaced 

Aspartate/ornithine carbamoyltransferase IPR006130  Replaced 

Prolyl 4-

hydroxylase; α-

subunit, C 

terminus 

IPR003865 Prolyl 4-hydroxylase, alpha subunit IPR006620 Manual 

update 

Prolyl 4-hydroxylase alpha-subunit, N-

terminal 

IPR013547 Manual 

update 
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Analysis involving the Pfam domains used in Russ and Lampel 2005 could not be 

completed since a list was not included with the publication and despite best efforts 

could not be obtained. 

The Hopkins and Groom InterPro domains, seen as filter (3) in Figure 3.1 are used as 

the first method of predicting the druggable genome, which consists of all human 

genes/proteins which contain one or more of these domains.  

Filters (1) and (2) from Figure 3.1 are used to generate each set of known approved drug 

targets (from ChEMBL and DrugBank). If a gene/protein from the Ensembl human 

genome is associated with a UniProt identifier on either list, information including its 

Ensembl identifiers, description and contained InterPro and Pfam domains is returned.  

All associated InterPro domains are then extracted from each set of known targets to 

create the filters (4) and (6) for the ChEMBL InterPro and DrugBank InterPro methods. 

All genes/proteins in the human genome which contain one or more of these domains 

are predicted to be druggable.  

Similarly, all associated Pfam domains are extracted from each set of known targets, 

creating the filters (5) and (7) for the ChEMBL Pfam and DrugBank Pfam methods. All 

human genes/proteins which contain one of more these domains is predicted to be 

druggable. To produce filters (8) and (9) these two lists of Pfam domains are queried 

against the PDB, returning only domains associated with a free ligand. Genes/proteins 

which contain one or more of these domains are predicted to be druggable by the 

ChEMBL/DrugBank PDB methods. 

3.4 Chemically Tractable Genome Outputs 

For each druggable genome prediction method, the input files shown in Figure 3.1 and 

contained within the ‘inputs’ directory of the attached ZIP file, were taken as the 

BioMart query filter and all associated genes and proteins from Ensembl human 

genome assembly GRCh37.p6 were returned in a tab delimited format with each new 

line containing: Interpro ID, Interpro Short Description, UniProt/SwissProt Accession, 

PDB ID, PFAM ID, EntrezGene ID, Ensembl Gene ID, Ensembl Transcript ID, 

Ensembl Protein ID, Associated Gene Name, Associated Transcript Name, Status 

(gene), Status (transcript), Ensembl Family Description and Description.  

As shown in Figure 3.2, these outputs can be parsed to allow gene/proteins identified to 

be compared between methods via Venn diagram.  Each prediction method can also be 

evaluated against the two public sets of known targets (ChEMBL and DrugBank) and 

the protein coding universe as defined by Ensembl GRCh37.p6 in order to assess the 

merits and caveats of each method.  
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In addition, a complete summary file can be produced from the output of all seven 

prediction methods which includes various gene and protein identifiers for each 

predicted druggable target, whether this protein is already listed as a known target in 

ChEMBL or DrugBank, the methods which predicted this protein as well as a predicted 

protein class using Perl regex captures and target classifications from ChEMBL if 

available. 

 
Figure 3.2: Pipeline producing data for comparisons, method evaluations and a complete summary 

of all the chemically tractable outputs for each prediction method. 

Arrows indicate the processing of each file with the scripts annotated on the arrow. BioMart filters are the 

InterPro domains etc seen on the right in Figure 3.1 and these files are the input for each query, unless the 

type is universe, sigp or tmhmm, in which case no input is required. Available query types are uniprot, 

interpro, pfam, pdb, go, sigp, tmhmm or universe. This output file can then be parsed to produce (a) total 

counts of the number of genes and proteins identified, (b) evaluated against known targets (e.g. from 

ChEMBL/DrugBank) and the universe to identity true/false positive/negatives and the 

sensitivity/specificity and (c) entered alongside all other used prediction methods (n = 7) to predict each 

protein’s target class and annotate it with other known information. 

  

+ all BioMart outputs 

model_evaluator.pl 

known output 

universe 

nonredundant_genes.pl output 

or 

nonredundant_proteins.pl output 

runner.pl biomart_xml.pl 

(input) type 

BioMart filter 

BioMart output 

a) Non redundant 

lists of Ensembl 

gene/protein IDs and 

total counts 

b) Gene IDs and 

whether this method 

predicts them as 

true/false 

positive/negative and 

total counts/percentages 

druggable_class_predictor_and_chemb

l_class.pl chembl_database n n(name 

output) 

c) Summary file including 

various IDs (Ensembl, 

Entrez, etc), predicted gene 

class and subclass through 

regex and ChEMBL TID 

and class/subclass(es) if 

available 
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3.5 Biopharmable Resources and Filters 

Gene Ontology (GO) (Consortium, 2004) provides a structured, controlled vocabulary 

describing biological processes, cellular components and molecular functions. In this 

case GO cellular component terms were used as an indication that a gene is associated 

with an accessible location, either in the extracellular space, extracellular region and 

plasma membrane. 

SignalP (Petersen et al., 2011) predicts the presence of a secretory signal peptide, a 

protein sorting signal which, in eukaryotes, targets its passenger protein for 

translocation across the endoplasmic reticulum membrane. TMHMM (Krogh et al., 

2001) predicts the presence of transmembrane helices. Both methods were trained using 

a hidden Markov model. The two resources were used here to produce predictions of all 

the secreted and transmembrane proteins, and therefore genes, in the human genome. 

A synopsis of all of the filters used to produce biopharmable estimates can be seen in 

Figure 3.3. 

 

Figure 3.3: Generation of the seven BioMart query filters for estimating the known (1 & 2) and 

potentially biopharmable targets. 

Bracketed numbers indicate an input which is used as a filter in a BioMart query, large arrows indicate 

the processing of the original input using scripts (included) or unix commands, smaller arrows indicate 

the output of the previous script is processed. ChEMBL is a local database, DrugBank is an XML file. 

The filters 6 and 7 are combined within the pipeline to produce a single BioMart output. 

Filters (1) and (2) from Figure 3.3 are used to generate each set of known approved 

biotechnology targets (from ChEMBL and DrugBank). If a gene/protein from the 

Ensembl human genome is associated with a UniProt identifier on either list, 

information including its Ensembl identifiers and description.  

All genes/proteins in the Ensembl human genome associated with a GO term indicating 

an extracellular or membrane bound location make up the biopharmable genome 

 tools/drugbank_uniprot_linker.pl inputs/raw/linker.txt 

tools/drugbank_xml_parser.pl  

DrugBank DB (2) UniProt IDs 

 go_ranker.pl 

go_confidence_rater.pl 

runner.pl biomart_xml.pl 

GO terms (3) 
(4) Ranked GO 

terms (5) Experimental 

ranked GO terms 

Output 

tools/chembl_query_all.pl  

 tools/chembl_output_reader.pl ChEMBL DB (1) UniProt IDs 

runner.pl biomart_xml.pl TMHMM filter (6) 
Combined Output Append 

SignalP filter (7) 
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prediction when (3) is used as a BioMart query filter. The output of this GO method is 

then filtered to include only genes/proteins which score above five on their experimental 

evidence code (allowing the possibility of medium or high) and the confidence this GO 

term is accessible to biotechnology (again, medium or high, but not both medium) – the 

GO above five method. This is further filtered to allow only genes/proteins with an 

experimental evidence code to support their associated GO term, the GO experimental 

rank above five method. 

The SignalP and TMHMM method predicts all genes/proteins in the Ensembl human 

genome which have a predicted signal peptide or transmembrane region to be 

biopharmable. 

3.6 Biopharmable Genome Outputs 

For each biopharmable genome prediction method, the input files shown in Figure 3.3 

and contained within the ‘inputs’ directory of the attached ZIP file, were taken as the 

BioMart query filter and all associated genes and proteins from Ensembl human 

genome assembly GRCh37.p6 were returned in a tab delimited format with each new 

line containing: Interpro ID, Interpro Short Description, UniProt/SwissProt Accession, 

PDB ID, PFAM ID, EntrezGene ID, Ensembl Gene ID, Ensembl Transcript ID, 

Ensembl Protein ID, Associated Gene Name, Associated Transcript Name, Status 

(gene), Status (transcript), Ensembl Family Description and Description. If GO terms 

were included in the query, GO terms are also returned. 

As for the chemically tractable predictions, outputs can be compared using produced 

non redundant gene and protein lists and each method was evaluated against known 

biotechnology targets and the universe of protein coding genes.  
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A complete summary file is also produced, showing the Ensembl, Entrez and UniProt 

identifiers for each predicted gene, a predicted target class and subclass, a ChEMBL 

identifier, class and subclass(es) if applicable, whether it is known to be approved and, 

if so, which database this information came from (ChEMBL or DrugBank) and which 

method(s) predicted it. Figure 3.4 shows a synopsis of the output files produced. 

 
Figure 3.4: Pipeline producing summary (a) data for comparisons, (b) method evaluations and (c) a 

complete summary of all the biopharmable outputs. 

Arrows indicate the processing of each file with the scripts annotated on the arrow. BioMart filters are the 

InterPro domains etc seen on the right in Figure 3.1 and these files are the input for each query, unless the 

type is universe, sigp or tmhmm, in which case no input is required. Available query types are uniprot, 

interpro, pfam, pdb, go, sigp, tmhmm or universe. This output file can then be parsed to produce (a) total 

counts of the number of genes and proteins identified, (b) evaluated against known targets (e.g. from 

ChEMBL/DrugBank) and the universe to identity true/false positive/negatives and the 

sensitivity/specificity and (c) entered alongside all other used prediction methods ( n = 4) to predict each 

protein’s target class and annotate it with other known information. 

  

+ all BioMart 

outputs 

model_evaluator.pl 

known_targets output 

universe 

nonredundant_genes.pl output 

nonredundant_proteins.pl output 

runner.pl biomart_xml.pl 

(input.txt) domain_type 

BioMart filter 

BioMart output 

a) Non redundant 

lists of Ensembl 

gene/protein IDs and 

total counts 

b) Gene IDs and 

whether this method 

predicts them as 

true/false 

positive/negative and 

total counts/percentages 

druggable_class_predictor.pl 

chembl_database n name(s) output(s) 

c) Summary file including 

Ensembl gene ID, whether 

this gene is an approved 

target in ChEMBL or 

DrugBank and which 

method(s) it was predicted 

by 
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Additionally, GO terms were filtered according to their evidence code, as shown in 

Table 3.2 (see Appendix 8.5 for an explanation of each code), and whether the GO term 

is likely to be in an accessible location, an example of which is shown in Table 3.3. 

Terms which least ambiguously describe a location likely to be accessible by 

biotechnology are ranked more highly than more ambiguous terms or those which are 

less likely to be accessible. 

Table 3.2: Confidence ranking assigned to each GO evidence code. 

GO Evidence Code Confidence 

TAS, EXP, IDA, IPI, IMP, IGI, IEP high (3) 

ISS, ISO, ISA, ISM, IGC, IBA, IBD, IKR, IRD, RCA, IEA medium (2) 

NAS, IC, ND, NR low (1) 

 

Table 3.3: Example of the confidence level assigned to each returned child GO term.  

The GO terms input as the BioMark filter are shown in bold. 

Go Term Go Term Name Confidence Biopharmable 

GO:0005615 extracellular space high (3) 

GO:0005578 proteinaceous extracellular matrix high (3) 

GO:0005576 extracellular region high (3) 

GO:0005886 plasma membrane medium (2) 

GO:0071438 invadopodium membrane high (3) 

GO:0046691 intracellular canaliculus low (1) 

GO:0009898 internal side of plasma membrane no (N/A) 

 

Ranking each child GO term is useful where an ambiguous parent term, such as plasma 

membrane which could refer to proteins exposed externally or internally to the cell, has 

less ambiguous child terms, for example as seen in Figure 3.5 where “integral to plasma 

membrane” indicates a protein would be inaccessible but its child term, “integrin 

complex”, indicates it is able to bind ligands from the extracellular matrix. 
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Figure 3.5: Example of GO terms with the parent term “plasma membrane” with different accessibility confidence levels (image edited from Binns et al., 

2009).  
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3.7 Prediction Method Evaluation 

For all chemically tractable or biopharmable target prediction methods, the protein 

coding universe of the human genome was taken to be 21,405 genes (coding 96,535 

proteins) extracted from Ensembl human genome assembly GRCh37.p6. Genes present 

in the universe which were not predicted by a given method or a known to be a target 

will be considered to be true negatives. 

When predicting chemically tractable targets, the ChEMBL 13 database (accessed on 

07/08/12, ChEMBL 14 is now available) provided 763 genes, coding 1,122 proteins, as 

known targets of phase IV small molecule drugs and the Drugbank database 

(downloaded on 10/06/12) lists 1,870 genes, coding 2,649 proteins, as the targets of 

approved small molecule drugs.  

To attempt to ensure only real targets of phase IV drugs were captured the ChEMBL 

targets all display significant activity with the phase IV drug. Multiple measures of 

activity were used in order not to exclude any targets on the basis, for example, that they 

are targeted by agonists but only inhibition was measured therefore capturing only the 

targets of antagonists. This was taken to be an activity concentration (AC50), inhibitory 

concentration (IC50), effective concentration (EC50) or effective dose (ED50) above 

100nM, an inhibitory constant (Ki) above 0.1nM or a recorded activity or inhibition 

above 25%. 

For biotechnology targets, the ChEMBL database returned 79 genes (coding 118 

proteins) as the targets of phase IV protein type drugs and the Drugbank database listed 

1,171 genes (coding 1,665 proteins) as the targets of approved biotechnology.  

A target class was predicted using regex capture for each predicted protein, for example 

if the description contained the phrase “ase”, “p450” or “rhodanese” and not the phrase 

“bcl2”, “release”, “ase coupled” or “ase activated” then it is pulled into a loop which 

then attempts to find the subclass of the enzyme, for example if it contains the phrase 

“peptidase” or “protease” it is placed into the enzyme major class and protease subclass. 

Transporters are also captured within this loop, in addition to separately, if the 

description matches “transport”, “neurotransmitter” or “carrier” as some were being 

found to contain the phrase “ATPase”. The full script can be found in the attached ZIP 

file at ‘scripts/druggable_class_predictor_and_chembl_class.pl’. 
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4 Results 

Using a combination of every prediction method, 12,577 genes (58.8% of all protein 

coding genes) were predicted to be chemically tractable and 9,660 genes (45.1% of all 

protein coding genes) were predicted to be biopharmable. Figure 4.1 shows that, if the 

predicted genes are taken to be true, there are 6,024 genes exclusively open to 

modulation by small molecule drugs and 3,107 genes which could be exploitable only 

through targeting with biotechnology. 

 
Figure 4.1: Comparison of the number of genes identified using all prediction methods as potentially 

druggable and biopharmable. 

A more conservative estimate which requires each druggable gene to be predicted by 

four methods reduces the druggable estimate by 54.5% (6,856 genes) to a total of 5,721 

predicted druggable genes. Requiring each biopharmable gene to be predicted by three 

methods reduces the estimate by 54.1% (5,229 genes) to a total of 4,431 predicted 

biopharmable genes. As shown by Figure 4.2, the mutually exploitable overlapping area 

decreases as well as the overall number of genes predicted. 

 
Figure 4.2: Comparison of the number of genes identified using four or more druggable methods 

and three or more biopharmable methods as potential target genes.  
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4.1 Druggable Genome 

The ChEMBL database provides 763 genes (coding 1,122 proteins) as known targets of 

phase IV small molecule drugs and the Drugbank database lists 1,870 genes (coding 

2,649 proteins) as the targets of approved small molecule drugs. As seen in Figure 4.3, 

there are fewer targets from ChEMBL than from DrugBank.  

  
Figure 4.3: Comparison of genes listed as the target of approved small molecule drugs in DrugBank 

and those showing significant activity with a phase IV small molecule drug in ChEMBL. 

The two sets also show little overlap, with only 486 indicated as targets in both 

databases. This represents 26% of data from DrugBank, which captures an additional 

1,384 genes, and 64% of data from ChEMBL, which provides an additional 277 genes. 

Therefore each target prediction method will be evaluated on its ability to correctly 

predict each data set individually. 
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4.1.1 Prediction of ChEMBL database small molecule targets  

The method which identifies genes with one of the same InterPro domains as an 

approved DrugBank target correctly predicted the most ChEMBL targets (679 genes, 

89% of all known targets) out of all the methods. However, it also predicts a total of 

12,225 genes to be druggable, over 57% of the total number of protein coding genes in 

the human genome and much more than any other method (Figure 4.4). The method 

which identifies genes with one of the same InterPro domains from a ChEMBL phase 

four drug target correctly predicted 87% of the available targets and offered a much 

more conservative estimate of 5,744 druggable genes (26.8% of the genome). 

 
Figure 4.4: Proportion of ChEMBL database phase IV small molecule target genes predicted 

correctly by each method. 

The orange section (tp, true positive) represents correctly predicted targets; blue (fp, false positive) 

indicates genes which are not approved targets in the ChEMBL database which have been predicted to be 

druggable by this method; green (tn, true negative) represents protein coding genes which were not 

predicted as druggable and are not known to be drug targets; and yellow (fn, false negative) represents the 

number of known targets which have been missed by each prediction method. The sum of the orange and 

blue areas indicates the proportion of the genome predicted as druggable. 

Identifying genes coding a protein which contains one or more of the Hopkins and 

Groom identified druggable InterPro domains offers the most conservative estimate, 

correctly predicting the fewest ChEMBL targets (552 genes, around 72% of all 

approved targets) but also predicting the fewest genes overall. A total of 2,779 genes 

were predicted, around 13% of the protein coding human genome. 
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Of interest, there was little difference observed between identifying genes containing 

one or more of every Pfam domain found in an approved drug target (i.e. ChEMBL 

Pfam or DrugBank Pfam) and only those Pfam domains more likely to be drug binding 

as it has been found to be associated with a free ligand in PDB. Each method predicted 

a total of 5,097 and 4,960 druggable genes respectively using ChEMBL targets, both 

around 23% of the human genome. Of the 137 fewer genes predicted by the more 

conservative ChEMBL PDB method, 26 were approved ChEMBL drug targets. 

The Pfam domains from DrugBank targets which are associated with a free ligand PDB 

correctly predicted slightly more targets than the same from ChEMBL targets, 

predicting five more genes correctly. This equates to a very small difference percentage 

wise, with 78% of possible targets correctly predicted by DrugBank PDB and 77% by 

ChEMBL PDB. But since the ChEMBL PDB method produced a much more 

conservative druggable genome estimate, with 23% of the human protein coding genes 

predicted against 45% using DrugBank PDB (but only missed approximately 1% more 

true targets), this method could be considered more reasonable. 
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4.1.2 Prediction of DrugBank database small molecule targets  

Once again the DrugBank target InterPro method correctly predicted the most approved 

drug targets, correctly predicting 1,846 out of a total of 1,870 approved targets (nearly 

99%). Again, however, it does predict over 57% of the human genome to be druggable 

(12,225 genes) as seen in Figure 4.5. 

 
Figure 4.5: Proportion of DrugBank database approved small molecule target genes predicted 

correctly by each method. 

The orange section (tp, true positive) represents correctly predicted targets; blue (fp, false positive) 

indicates genes which are not approved targets in the ChEMBL database which have been predicted to be 

druggable by this method; green (tn, true negative) represents protein coding genes which were not 

predicted as druggable and are not known to be drug targets; and yellow (fn, false negative) represents the 

number of known targets which have been missed by each prediction method. The sum of the orange and 

blue areas indicates the proportion of the genome predicted as druggable. 

The Hopkins and Groom method offered the most conservative estimate, but missed 

1,110 approved drug targets from DrugBank (Figure 4.5), compared to only 211 false 

negatives using ChEMBL data (Figure 4.4). Therefore, only 41% percent of DrugBank 

targets were predicted by this method compared to 72% of ChEMBL targets. 

Similarly, little difference was observed between all Pfam domains from approved 

targets and only using those with structures with free ligands in PDB (292 fewer genes, 

66 of which were true positives). Again, 23% of the genome was estimated to be 

druggable using ChEMBL PDB and 45% using DrugBank PDB, however DrugBank 

data was significantly better at correctly predicting DrugBank targets than ChEMBL 
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data (81% versus 45%) when compared to predicting ChEMBL targets (78% versus 

77%). 

Higher numbers of false negatives are observed overall in Figure 4.5 compared to 

Figure 4.4, particularly from more conservative methods such as the Hopkins and 

Groom InterPro domains or ChEMBL Pfam domains. This could be due to the larger 

overall number of known targets in DrugBank or the DrugBank database may list 

targets which display low levels of activity with approved drugs or more types of drug. 

 

4.1.3 Druggable Predictions 

When identifying genes containing InterPro domains or Pfam domains from the same 

set of known targets (i.e. ChEMBL or DrugBank), Pfam offers the more conservative 

estimate. Predicting known targets from ChEMBL using Pfam or InterPro domains 

from the ChEMBL targets, the same 4,587 genes were predicted as druggable using 

both methods, with extra 510 predicted using Pfam domains, as opposed to the extra 

1,157 using InterPro domains (Figure 4.6). 

 
Figure 4.6: Comparison of predicted druggable genes using InterPro or Pfam domains from 

proteins showing significant activity with a phase IV small molecule drug in ChEMBL. 

Querying PDB to return only Pfam domains associated with a free ligand excluded 77 

Pfam domains from ChEMBL targets with either no known ligand or no structure in 

PDB, leaving 372 Pfam domains in total and resulting in a prediction 137 genes smaller. 

Similarly, the PDB query excluded 208 Pfam domains from DrugBank targets, leaving 

978 Pfam domains in total and resulting in a prediction 292 genes smaller. 
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When two of the most conservative estimates were compared (Hopkins and Groom 

InterPro and ChEMBL Pfam) it was found that 2,100 genes were common to both, as 

shown in figure 4.7. The ChEMBL Pfam method identified 2,318 more genes overall, 

with 2,997 of these not containing an InterPro domain identified by Hopkins and 

Groom. Identified InterPro and Pfam domains can be found under the ‘inputs’ directory 

of the submitted ZIP file, in a directory called the database name, ‘chembl’ or 

‘drugbank’. 

 

Figure 4.7: Comparison of genes identified as potentially druggable using the Hopkins and Groom 

InterPro domains from 2002 and all Pfam domains from proteins showing significant activity with 

a phase IV small molecule drug in ChEMBL. 
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Figure 4.8 compares the most conservative estimate, Hopkins and Groom InterPro 

domains, against the largest estimate, DrugBank InterPro domains. Almost 98% of 

genes predicted as druggable by the Hopkins and Groom InterPro were also predicted 

by DrugBank InterPro. However, 58 genes were missed by DrugBank InterPro and this 

method also predicts 9,504 genes extra genes, around 4.4 times as many as predicted by 

Hopkins and Groom InterPro.  

There were 42 InterPro domains included in the Hopkins and Groom set not observed in 

DrugBank targets, 102 domains in common and 2,036 extra domains gained from 

DrugBank targets. Similarly, there were 69 InterPro domains from Hopkins and Groom 

which were not observed in ChEMBL targets, 75 domains in common and 857 extra 

InterPro domains obtained from the ChEMBL targets. 

 
Figure 4.8: Comparison of genes identified as potentially druggable using the Hopkins and Groom 

InterPro domains from 2002 and all InterPro domains of proteins listed as the target of an 

approved drug in DrugBank.  
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4.1.4 Sensitivity and Specificity of methods predicting ChEMBL small 

molecule targets 

Figure 4.9: Evaluation of each method when predicting ChEMBL phase IV drug targets. 

Orange bars (spec) show specificity; blue (sens), sensitivity; green (npv), negative predictive value; and 

yellow (ppv), positive predictive value. 

Specificity is the percentage of genes which are not known drug targets and were not 

predicted to be druggable. Sensitivity is the percentage of known drug targets which are 

correctly predicted to be druggable. The negative predictive value indicates the 

percentage of genes not known to be druggable which were not identified as druggable. 

The positive predictive value indicates the percentage of genes identified as druggable 

which are known drug targets. 

Seen in Figure 4.9, the prediction method using Hopkins and Groom InterPro domains 

is the most specific, correctly identifying 89.2% of true negatives, with the next highest, 

using PDB confirmed ChEMBL target Pfam domains, at 78.8%. The ChEMBL-derived 

methods are significantly more specific than the DrugBank-derived methods. 

The Hopkins and Groom method also provides the highest positive prediction value, 

showing it correctly predicts a druggable target 19.9% of the time with the next best 

percentage coming from the use of ChEMBL Pfam domains (12.1%). The DrugBank 

methods show poor positive predictive power, from 5.6-6.2%. 

Using all InterPro domains from DrugBank targets results in the most sensitive method, 

correctly identifying 89% of ChEMBL targets, with the ChEMBL InterPro domains 

showing the second highest sensitivity, identifying 86.9% of targets correctly. Overall 

there is very little variation in sensitivity compared to specificity. 
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All methods had high negative predictive values of above 98%, however the ChEMBL 

InterPro method correctly predicts true negatives best at 99.4% of the time, with the 

DrugBank InterPro next best at 99.1%. 

Therefore, when tested against ChEMBL data, the Hopkins and Groom, PDB confirmed 

ChEMBL Pfam and ChEMBL Pfam methods provide the most conservative predictions 

of the druggable genome. Using all InterPro domains from known targets provides the 

largest druggable genome estimate, with InterPro domains from DrugBank targets the 

most numerous. 

 

4.1.5 Sensitivity and Specificity of methods predicting DrugBank small 

molecule targets 

 
Figure 4.10: Evaluation of each method when predicting DrugBank approved drug targets. 

Orange bars (spec) show specificity; blue (sens), sensitivity; green (npv), negative predictive value; and 

yellow (ppv), positive predictive value. 

Again, as seen in Figure 4.9, Figure 4.10 shows the most specific method for predicting 

druggable targets is using the Hopkins and Groom InterPro domains, correctly 

predicting 89.7% of negative genes, with PDB confirmed ChEMBL target Pfam 

domains next best at 78.9%.  

Hopkins and Groom InterPro domains also produce the best positive predictive value, at 

27.3%, showing just over a quarter of genes predicted were true positives, with the next 

best value (16.9%) seen when using PDB confirmed ChEMBL Pfam domains, with all 
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ChEMBL methods correctly predicting drug targets around 16% of the time and 

DrugBank methods at around 15%. 

The same as when predicting the ChEMBL targets, the DrugBank InterPro method 

provides the best sensitivity when predicting DrugBank targets. It predicted almost all 

genes of approved targets (98.7%), with the DrugBank target Pfam domain method 

showing the second best at 84.3%. 

Negative predictive values show much more variation between methods when 

predicting DrugBank targets than those from ChEMBL. The DrugBank InterPro method 

is best at correctly predicting negative genes, with 99.7% of genes predicted as negative 

correctly, and DrugBank Pfam the second best predicting 97.5%. However the Hopkins 

and Groom domains correctly predict true negatives 94% of the time, indicating this 

method misses the highest percentage of true DrugBank targets. 

Therefore, the Hopkins and PDB confirmed ChEMBL Pfam methods provide the 

smallest estimates of the druggable genome when tested against DrugBank data. The 

DrugBank target associated InterPro and Pfam domains provide the most inclusive 

druggable genome estimates. 

 

4.1.6 Receiver operating characteristic curves for methods predicting small 

molecule targets 

In a receiver operating characteristic (ROC) curve, the area under curve (AUC) 

represents the method’s discriminatory power, a value of 1 would represent a perfect 

test, with 100% specificity and 100% sensitivity, whereas a value of 0.5 would indicate 

that the test has no discriminatory power, performing no better than chance. 

Figure 4.11 shows that, when predicting significant targets of phase IV drugs from the 

ChEMBL database, the ChEMBL InterPro method shows the greatest predictive power 

(0.811) closely followed by the Hopkins and Groom method (0.808). Figure 4.12 shows 

that, when predicting listed targets of approved drugs from the DrugBank database, the 

DrugBank target associated InterPro domains provided the best predictive power 

(0.728).  

Each ROC curve also shows the methods’ specificity and sensitivity in relation to each 

other. In Figure 4.11 the most sensitive methods can be seen to be ones using InterPro 

domains as they have the highest points, whereas the most specific methods are those 

shifted furthest to the left, for example the Hopkins and ChEMBL Pfam and PDB 

methods. Additionally, the two ChEMBL Pfam methods show similar specificity and 

sensitivity values in comparison to the other methods, which tend to be either much 

more specific or much more sensitive. 
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Similarly, in Figure 4.12 the highest peak is observed using the DrugBank InterPro 

method, showing it is most sensitive, and the peak furthest to the left is the Hopkins 

method, showing it is, again, most specific. However, since these peaks are of smaller 

magnitude and less centralised, either the DrugBank Pfam or DrugBank PDB method 

may provide the best all round prediction since it shows similar sensitivity and 

specificity and good predictive power, with an AUC of 0.707 and 0.696 respectively. 

Overall, better predictive power was observed when predicting the ChEMBL targets 

(Figure 4.11) than DrugBank targets (Figure 4.12), with best AUCs of 0.811 and 0.728.  
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Figure 4.11: ROC curves showing the predictive power of each method for the ChEMBL targets. 

AUC, area under curve; TPR, true positive rate; and FPR, false positive rate. The dotted line indicates an AUC of 0.5 which is the predictive power which could be 

observed by chance. 
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Figure 4.12: ROC curves showing the predictive power of each method for the DrugBank targets. 

AUC, area under curve; TPR, true positive rate; and FPR, false positive rate. The dotted line indicates an AUC of 0.5 which is the predictive power which could be 

observed by chance. 
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4.1.7 Druggable Predictive Power 

Both when predicting targets from ChEMBL (which show significant activity with a 

phase IV small molecule drug) or targets from DrugBank (of approved small molecule 

drugs), the most specific method used the Hopkins and Groom InterPro domains, which 

correctly predicted 89.2% and 89.7% of the protein coding genome respectively. The 

next most specific method was using PDB confirmed ChEMBL target associated Pfam 

domains, predicting around 79% correctly in each case. 

When predicting both the ChEMBL and DrugBank known targets, the most sensitive 

method was using DrugBank target associated InterPro domains, correctly predicting 

89% of ChEMBL targets and 99% of DrugBank targets. For ChEMBL targets, the next 

most sensitive method was using ChEMBL InterPro domains, at 87%, whereas for 

DrugBank targets it was using DrugBank Pfam domains, at 84%. 

From plotting the ROC curves and calculating the AUC, the greatest predictive power 

for ChEMBL targets was seen when using ChEMBL InterPro domains, with an AUC of 

0.811, classing it as a good prediction (from 0.8 to 0.9) according to Muller et al. 

(Muller et al., 2005). The Hopkins method scored 0.808, also classing itself as a good 

test, and the ChEMBL Pfam and ChEMBL PDB methods scored 0.796 and 0.782 

respectively, classing them as fair tests (0.7-0.8). 

The greatest predictive power for DrugBank targets was observed using DrugBank 

InterPro domains, at 0.728, and DrugBank Pfam domains, at 0.708, classing them as 

fair. The rest of the methods were poor predictors of DrugBank targets (AUC<0.7). 

 

4.1.8 Hopkins and Groom comparison 

By identifying protein coding genes with the InterPro domains from Hopkins and 

Groom 10 years later, the 2012 predicted druggable space is now 272 genes smaller 

with 2,779 genes identified compared to the previously identified 3,051. As shown in 

Figure 4.13, genes coding proteins with GPCR domains now represent the largest 

percentage of the druggable genome, and protein kinases represent 2% less. The 

gamma-carboxylase group is now represented by a single gene and, along with 

metallopeptidases, has been replaced in the top 10 by neurotransmitters and 

transporters. 
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Figure 4.13: The distribution of the Hopkins and Groom druggable InterPro domains contained within the a) 2,779 genes identified by this method in 2012 

and b) 3,051 genes predicted in the orignal paper from 2002. Showing the top 10 most frequently present InterPro domain groups. 

InterPro domains described as rhodopsin-like and secretin-like GPCRs have been combined, as have serine-threonine/tyrosine- and serine-threonine- / dual-specificity 

protein kinase catalytic domains and the two neurotransmitter-gated ion-channel domains. Every other domain is represented individually.  

a) 2012 b) 2002 
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4.1.8 Predicted Druggable Target Classes 

From 1,499 genes which show activity with a phase IV drug, 1,290 genes (86%) had 

their ChEMBL major target class correctly predicted through regex capture, 169 

(11.3%) were incorrectly classified and 40 (2.7%) remained unclassified. Figure 4.14 

shows the predicted target classes of all genes predicted as druggable using all seven 

methods. This takes into account genes returned with more than one description which 

resulted in a different major classification (e.g. if a BioMart error occurred and an 

enzyme was returned without a description, the gene would be found in both the 

enzyme and unclassified category) but if a gene was only associated with one class it is 

only represented once. 

 
Figure 4.14: The predicted target class of all genes predicted to be druggable using all prediction 

methods.  

The total of 13,786 takes into account genes with multiple descriptions resulting in different target 

classes, the total number of unique genes is 12,225. 

The majority (30.9%) of predicted targets were enzymes and 27.8% of targets were not 

classified using regular expressions which correctly captured the majority of major 

target classes of known drug targets. Cytosolic proteins were the next largest class at 

10.5% of genes, 10.2% of potential targets were receptors, and the remainder were 

classified as channels (8.2%), transcription factors (4.1%) and transporters (4%). Other 

target classes represented less than 2% each and less than 5% of the total space. 

An attempt was also made to identify some of the major subclasses of each identified 

gene, the results of which can be seen in Table 4.1. This takes into account genes with 

differing descriptions causing them to fit into more than one subclass (e.g. if a gene 
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were to code a protein with a description captured by the kinase regex and also one 

captured as a protease). Although specific subclasses proved difficult to determine 

through programmatic capturing of keywords, the majority of enzymes identified were 

kinases (796 genes), the majority of receptors appear to be olfactory or taste GPCRs 

(492) and most of the identified ion channels matched as ligand gated (121). 

Table 4.1: The predicted target class and subclass of all genes predicted as druggable. 

The total of 14,281 takes into account genes with multiple descriptions resulting in different target classes 

or subclasses, the total number of unique genes is 12,225. Seven transmembrane (7TM) refers to 

members of the GPCR family, 7TM1 for class A GPCRs, 7TM2 for class B and 7TM3 for class C. Other 

GPCRs include classes such as frizzled and smoothened. 

Predicted Target Class / Subclass  Number Of Genes 

Enzyme  4343 

N/A  2451 

Kinase  796 

Protease  543 

Phosphatase  250 

Reductase  164 

P450  90 

Phosphodiesterase  45 

Aminoacyltransferase  4 

Unclassified  3825 

Membrane Receptor  1802 

N/A  565 

7TM1 Olfactory/Taste  492 

7TM1  300 

Other GPCR  218 

Nuclear  107 

7TM2  60 

Integrin  34 

7TM3  26 

Cytosolic Other  1453 

Ion Channel  1137 

N/A  799 

Ligand Gated  121 

Ryanodine Receptor  114 

Voltage Gated  103 

Transcription Factor  561 

Transporter  557 

Surface Antigen  252 

Secreted  239 

Nuclear Other  77 

Structural  35 

Total  14281 
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4.2 Biopharmable Genome 

The ChEMBL database contains only 79 genes (coding 118 proteins) as known targets 

of phase IV biotechnology and the Drugbank database lists 1,171 genes (coding 1,665 

proteins) as the targets of approved biotechnology. Of the limited ChEMBL coverage of 

biotechnology targets, less than half of these (39 genes) were also found in the 

DrugBank database, as seen in Figure 4.15. 

 

 
Figure 4.15: Comparison of genes listed as the target of approved small molecule drugs in 

DrugBank and those showing significant activity with a phase IV small molecule drug in ChEMBL. 
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4.2.1 Prediction of ChEMBL database biotechnology targets   

 
Figure 4.16: Proportion of ChEMBL database phase IV biotechnology target genes predicted 

correctly by each method. 

The orange section (tp, true positive) represents correctly predicted targets; blue (fp, false positive) 

indicates genes which are not approved targets in the ChEMBL database which have been predicted to be 

biopharmable by this method; green (tn, true negative) represents protein coding genes which were not 

predicted as biopharmable and are not known to be drug targets; and yellow (fn, false negative) represents 

the number of known targets which have been missed by each prediction method. The sum of the orange 

and blue areas indicates the proportion of the genome predicted as biopharmable. 

As can be seen in Figure 4.16, the poor coverage of biotechnology targets in ChEMBL 

means known targets represent less than 0.4% of the protein coding genome. Genes 

associated with a GO term indicating extracellular or plasma membrane bound location 

predicted 44% of the known targets (35 genes). The GO terms predicted a total of 6,209 

genes and a combination of SignalP and TMHMM predicted 8,117 genes as being 

biopharmable. The most conservative estimate, the genes associated with GO terms for 

an accessible location which were then filtered to so only those with experimental 

evidence for the association and medium or high confidence the associated GO term 

indicates an accessible location, predicted 30 genes correctly and 3,169 biopharmable 

genes in total.  
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4.2.2 Prediction of DrugBank database biotechnology targets   

 
Figure 4.17: Proportion of DrugBank database approved biotechnology target genes predicted 

correctly by each method. 

The orange section (tp, true positive) represents correctly predicted targets; blue (fp, false positive) 

indicates genes which are not approved targets in the DrugBank database which have been predicted to be 

biopharmable by this method; green (tn, true negative) represents protein coding genes which were not 

predicted as biopharmable and are not known to be drug targets; and yellow (fn, false negative) represents 

the number of known targets which have been missed by each prediction method. The sum of the orange 

and blue areas indicates the proportion of the genome predicted as biopharmable. 

Shown in Figure 4.17, the greatest number of true positives (686 genes, ~58% of all 

approved targets) was identified through filtering genes using a combination of signal 

peptides (SigP) and transmembrane helices (TMHMM). The second highest, 675 genes, 

were identified using GO terms for an extracellular or plasma membrane location. 

However, these methods also produced the greatest numbers of false positives, with 

SigP/TMHMM predicting 8,117 genes to be biopharmable (~39% of the human protein 

coding genome). The GO terms method predicted biopharmable 6,209 genes (29% of 

the universe). 

Filtering the GO term predictions by rank results in fewer false positives, but also fewer 

true positives, with those ranked above five (meaning when medium equals two and 
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high equals three, they scored five or above on the sum of the level of confidence in the 

evidence associating the gene to the GO term and the confidence this GO term indicates 

an accessible location) predicting 91 fewer target genes than the original prediction. 

Similarly, the same prediction but with genes removed which did not have experimental 

evidence to support their location, 200 approved targets are lost, though the number 

predicted, or false positive, genes is reduced by 2,840, or just over half (~51%). 

 

4.2.3 Biopharmable Predictions 

Of the two prediction methods, genes coding proteins predicted to contain a signal 

peptide or transmembrane region predicted a larger biopharmable genome than those 

associated with a GO term for extracellular or plasma membrane location. There were 

4,666 commonly predicted biopharmable genes, with 3,451 extra genes predicted only 

by the SigP and TMHMM method and 1,543 unique to the GO term method (Figure 

4.18). 

 

Figure 4.18: Comparison of the number of genes identified using the two main biopharmable 

prediction methods. 
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4.2.4 Sensitivity and Specificity of methods predicting ChEMBL 

biotechnology targets  

 

Figure 4.19: Evaluation of each method when predicting ChEMBL phase IV biotechnology targets. 

Orange bars (spec) show specificity; blue (sens), sensitivity; green (npv), negative predictive value; and 

yellow (ppv), positive predictive value. 

The highest specificity (85%) was achieved when genes associated with the 

extracellular or plasma membrane GO terms were filtered to leave only those with 

experimental evidence and a ranking of above five. The SignalP and TMHMM method 

had the lowest specificity at 62%, as shown in Figure 4.19. 

Both the SigP and TMHMM and GO terms methods had the highest sensitivity at 

44.3% each as they both identified 35 biopharmable genes correctly. The least sensitive 

method, the ranked experimental GO terms, only correctly predicted 40% of the 

biopharmable ChEMBL targets. 

All methods had a negative predictive value of around 99.7%. The best positive 

predictive value was seen using the ranked experimental GO terms, however this was 

only 1%, indicating these methods correctly predicted a known target a very small 

percentage of the time due to the very small dataset.  
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4.2.5 Sensitivity and Specificity of methods predicting DrugBank 

biotechnology targets 

 
Figure 4.20: Evaluation of each method when predicting DrugBank approved biotechnology targets. 

Orange bars (spec) show specificity; blue (sens), sensitivity; green (ppv), positive predictive value; and 

yellow (npv), negative predictive value. 

In Figure 4.20, as the specificity of a method increases the sensitivity decreases. SignalP 

and TMHMM is the most sensitive, correctly identifying 59% of available targets. 

Compared to the SigP/TMHMM method, genes identified via GO terms seem to show 

increase in specificity (73% versus 63%) without much of a decrease in sensitivity (58% 

versus 59%).  

The most specific method was the GO terms filtered by experimental evidence code and 

either medium or high confidence that the term indicates an accessible location, 

showing 87% specificity. However, sensitivity for this method drops to 41%, showing it 

misses a large number of known biopharmable targets.  
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4.2.6 Receiver operating characteristic curves for predicting targets of 

biotechnology 

The ChEMBL predictions seen in Figure 4.19 and Figure 4.21 are based on a very small 

dataset. As there were so few true positives it is hard to evaluate the true power of these 

methods to predict biopharmable targets. Nevertheless, the method with the best 

predictive power was the GO term query with experimental evidence which ranked five 

or higher for accessibility, with an AUC of 0.62.  

When predicting the more numerous DrugBank targets (Figure 4.22), the method using 

all GO term results provided the most predictive power, with an AUC of 0.65. In 

contrast to predicting ChEMBL targets, the predictive power of the GO terms decreased 

as they were filtered by evidence code and confidence the associated term indicated 

accessibility. 

For predicting ChEMBL biotech targets the SignalP and TMHMM method showed little 

to no predictive power, with an AUC of only 0.53. It performed slightly better when 

predicting DrugBank targets, with an AUC of 0.6. 
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Figure 4.21: ROC curves showing the predictive power of each method for the ChEMBL targets. 

AUC, area under curve; TPR, true positive rate; and FPR, false positive rate. The dotted line indicates an 

AUC of 0.5 which is the predictive power which could be observed by chance. 
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Figure 4.22: ROC curves showing the predictive power of each method for the DrugBank targets. 

AUC, area under curve; TPR, true positive rate; and FPR, false positive rate. The dotted line indicates an 

AUC of 0.5 which is the predictive power which could be observed by chance. 

 

4.2.7 Biopharmable Predictive Power 

The most specific method for predicting both ChEMBL phase IV biotechnology targets 

and DrugBank approved biotechnology targets, at 85% and 87% respectively, was the 

GO terms which were filtered for only those with an experimental evidence code and 

the child term had medium or high likelihood of indicating an accessible location. 

Just using the parent GO terms without filtering and the SignalP and TMHMM methods 

gave the most sensitive predictions, both predicting 44.3% of known biopharmable 

ChEMBL targets and each method predicting 58% and 59% of known DrugBank 

targets respectively. However, the SignalP andTMHMM method had lower specificity 
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than the GO terms (73% versus 63%) when predicting known biopharmable DrugBank 

targets. 

From the ROC curves, when predicting ChEMBL targets the GO terms filtered by 

experimental evidence and ranking five or above showed the best predictive power with 

a score of 0.616 indicating it is a poor prediction. Every other method scored under 0.6, 

making them almost unusable for predicting ChEMBL targets, with SigP/TMHMM 

scoring only 0.532, just above that observed through chance.  

However, every method scored above 0.6 when predicting DrugBank targets, with GO 

terms seen as the best method at 0.652, which is still a poor predictor but more useful 

than those predicting ChEMBL biotechnology targets. 

 

4.2.8 Predicted Biopharmable Target Classes 

From an identified 807 known biopharmable genes which show activity with a phase IV 

drug, 701 genes (86.9%) had their ChEMBL major target class correctly predicted 

through regex capture, 90 (11.2%) were incorrectly classified and 16 (2%) remained 

unclassified. Figure 4.23 shows the predicted target classes of all genes predicted as 

biopharmable using all four methods, taking into account genes returned with more than 

one description resulting in a different classification, but genes with only one associated 

description (therefore, only one associated class) will be represented once. 

 
Figure 4.23: The predicted target class of all genes predicted to be biopharmable using all prediction 

methods.  
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The total of 11,774 takes into account genes with multiple descriptions resulting in different target 

classes, the total number of unique genes is 9,660. 

The majority of predicted biopharmable genes were unclassified (29.2%), with enzymes 

the most abundant class at 22.9%. Channels the second best represented at 20.8% and 

receptors were found to make 12% of the predicted biopharmable genome. Transporters 

represent 5.2% and other classes, such as surface antigens (2.7%), made up less than 3% 

of the estimate each. 

The identified major subclasses of each gene can be seen in Table 4.2. As with Figure 

4.23, if a gene was returned with more than one description which resulted in it being 

assigned more than one subclass it will be represented more than once. Although 

specific subclasses proved difficult to determine through programmatic capturing of 

keywords, the majority of enzymes identified were proteases (447 genes), the majority 

of channels appear to be ligand gated (204) and most of the identified receptors were 

olfactory or taste GPCRs (492). 
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Table 4.2: The predicted target class and subclass of all genes predicted as biopharmable. 

The total of 12,267 takes into account genes with multiple descriptions resulting in different target classes 

or subclasses, the total number of unique genes is 9,660. Seven transmembrane (7TM) refers to members 

of the GPCR family, 7TM1 for class A GPCRs, 7TM2 for class B and 7TM3 for class C. Other GPCRs 

include classes such as frizzled and smoothened. 

Predicted Target Class / Subclass  Number of Genes 

Unclassified  3433 

Enzyme  2757 

N/A  1565 

Protease  447 

Kinase  373 

Phosphatase  149 

Reductase  99 

P450  95 

Phosphodiesterase  27 

Aminoacyltransferase  2 

Ion Channel  2479 

N/A  2103 

Ligand Gated  204 

Voltage Gated  149 

Ryanodine Receptor  23 

Membrane Receptor  1816 

N/A  602 

7TM1 Olfactory/Taste  492 

7TM1  301 

Other GPCR  228 

Nuclear  65 

7TM2  64 

Integrin  38 

7TM3  26 

Transporter  614 

Surface Antigen  320 

Cytosolic Other  295 

Transcription Factor  284 

Secreted  237 

Nuclear Other  30 

Structural  2 

Grand Total  12267 
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4.3 Results Summary 

In total, 12,577 genes were predicted by the seven different druggable genome 

prediction methods. If only the genes predicted by four or more of the methods are 

taken as the estimate, it stands at 5,721 genes. In the Hopkins and Groom replication, 

the major target class is now GPCRs instead of protein kinases and the estimate size has 

reduced overall from 3,051 genes in 2002 to 2,779 in 2012. 

Druggable predictions were reasonably specific, with the Hopkins and Groom InterPro 

domains which correctly predicting 89.2% and 89.7% of the protein coding genome 

when testing against ChEMBL and DrugBank targets respectively. Similar specificity 

was observed using PDB confirmed ChEMBL target associated Pfam domains, 

predicting around 79% correctly in each case. It is also possible to be very sensitive, 

with the DrugBank target associated InterPro domains method correctly predicting 89% 

of ChEMBL targets and 99% of DrugBank targets. 

However, since no method was both very sensitive and very specific, the appropriate 

druggable target prediction method to use should be based on whether a smaller, higher 

confidence prediction is required or a larger prediction which includes as many targets 

as possible is required. The use of DrugBank InterPro domains excludes the fewest 

potential targets, but predicts over half of the protein coding genome. Hopkins and 

Groom InterPro domains or ChEMBL PDB confirmed Pfam domains create the 

smallest, most conservative estimates, but also show the highest numbers of false 

negatives.  

On the assumption that the extracted ChEMBL targets represent all real targets of 

approved drugs, the ChEMBL Pfam domains prediction may offer a compromise with 

80.9% sensitivity and 78.3% specificity. As it had an area under curve of 0.796 this puts 

it on the boundary between a fair and good test and since the aim is to predict 

unexploited drug targets some “false positives” are required. 

The four biopharmable genome prediction methods estimated the druggable genome at 

9,660 genes or, when taking only genes predicted by three or more methods, 5,229. The 

largest target class were unclassified genes, probably due to the regex capturing typical 

compound target classes or possibly due to BioMart returning genes with no 

description. The second largest class was the enzymes. 

The most sensitive (58.6%) method was when predicting the known DrugBank targets 

using the SignalP and TMHMM method. Best specificity (86.7%) was observed when 

predicting DrugBank known targets using GO terms supported by experimental 

evidence and a rank above five. The best predictive power, with an AUC of 0.652, came 

from using GO terms which indicate an extracellular or plasma membrane bound 

location to predict DrugBank known targets. 
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4.4 Prediction Pipeline 

A collection of easily updated scripts can be found on the attached DVD, along with 

complete lists of all of the genes predicted by each method, a drug target class predicted 

through regular expressions, a ChEMBL target class (if known) and whether this gene is 

listed as an approved target in ChEMBL or DrugBank. A fully automated prediction 

process can be launched using the pipeline script. All of which were generated through 

the course of this project. 

The druggable predictions produced using the Hopkins and ChEMBL methods have 

been used at GlaxoSmithKline to annotate the small molecule tractability of genes and 

create a list of tractable genes to form a focussed screening set which could be run 

through an animal model. 

Extensive documentation for these scripts was also produced in the form of PerlDocs, 

Wiki pages and README files, which are housed on GSKs internal intranet system. 
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5 Discussion 

Knowledge of which human proteins are likely to be druggable and/or biopharmable is 

important in the development of new therapeutics. These estimates highlight the genes 

and proteins which may be targeted by pharmaceutical and biotechnology companies 

exclusively and areas may be a future focus of both. Proteins of interest in disease states 

can be checked against these target lists to gage whether they are likely to be successful 

drug targets, potentially cutting down expenditure on assaying compounds against 

targets unlikely to bind them.  

Additionally, known targets (and proteins similar to them) already have compounds 

they are known to bind which provide a starting point for new compound assays, 

meaning there may be less expenditure required to reach an optimum lead. Since they 

are less of a risk than novel targets, they are less likely to cause attrition at later stage. 

The use of open source and publicly available data should allow academics to assess 

whether proteins they have identified as potential targets are likely to be drug binding, 

aiding drug target discovery outside of industry. 

5.1 Recommendations 

The best estimate of the druggable genome depends on its intended use. If a 

conservative, high confidence dataset with as few false positives as possible is required, 

the Hopkins and Groom compiled druggable InterPro domains offer the smallest 

druggable estimate. The removal of known olfactory or taste receptors and targets 

known to be toxic would reduce the number of predicted proteins unlikely to be drug 

target in this prediction. Additionally, the unpublished druggable Pfam domains used by 

Russ and Lampel in 2005 may also be of interest for this purpose, but our inability to 

obtain this data prevented testing of their utility. 

But the Hopkins and Russ domains have been manually curated, requiring a high level 

of validation and effort to update. The most conservative druggable genome estimate 

using an automatically updating method came from using the Pfam domains of 

ChEMBL associated with a ligand in PDB. Although 2,181 more genes were predicted 

than the Hopkins and Groom method there were 39 less known targets from ChEMBL 

missed and 80 from DrugBank.  

If, however, a large, lower confidence dataset is required, excluding as few potential 

druggable targets as possible, the DrugBank InterPro method only misses 84 ChEMBL 

targets (127 less than the Hopkins and Groom method) and 24 DrugBank targets. It 

should be noted that it also predicts a very high proportion of the genome as druggable, 

only excluding 43% of the protein coding human genes from this list of potential 

targets. 
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A compromise may exist in using a combination of these prediction techniques. A high 

percentage of ChEMBL known targets (80.2%) are predicted by four or more of the 

prediction methods whilst maintaining a specificity of 75.2%. In both regards, however, 

the ChEMBL target Pfam domains outperform this consensus method with a sensitivity 

and specificity of 80.9% and 78.3% respectively. Since it also offers good best 

predictive power with an AUC of 0.796, the use of Pfam domains from ChEMBL 

targets may offer the best automated solution. 

The best biopharmable prediction is hard to determine. No method managed to predict 

even half of the known ChEMBL targets and the most successful prediction of the 

DrugBank data captured 58.6% of the targets but also only 63% specificity. Using a 

consensus of targets predicted by three or more prediction techniques resulted in a 

slightly greater level of specificity (80.9%) than all other methods, expect the GO term 

method filtered by experimental evidence and confidence that it indicates an accessible 

location. However, the specificity drops, predicting less than half of known DrugBank 

targets (48.5%). Problems in predicting extracellular proteins may stem from difficulties 

in viewing them at an intact molecular level, since they are difficult to capture using 

crystallography or NMR (Vakonakis and Campbell, 2007). Signal peptides and 

transmembrane helices are hard to detect and distinguish, particularly for eukaryotes. 

Both areas are hydrophobic, with transmembrane helices having typically longer 

hydrophobic regions and no cleavage site, but the cleavage site pattern is insufficient to 

distinguish the two types of sequence (Petersen et al., 2011). 

From these tests, determining the disease relevance of proteins should be the primary 

approach for the selection of targets for biotechnology since antibodies can be 

developed against many targets, whereas compound libraries already contain the drugs 

and require a target. Known receptors, ion channels, antigens and other cell surface 

protein classes, as well as components of the extracellular matrix, can be considered 

accessible to modulation, though transmembrane and secreted proteins appear hard to 

predict. 

Figure 4.13 shows that using Hopkins and Groom druggable InterPro domains from 

2002 now produces an estimate which is 272 genes smaller. Some of this is due to this 

work’s removal of the supplied B30.2/SPRY domain, which does not appear to be 

druggable, and replacement with Vitamin K-dependent gamma-carboxylase, with which 

it had apparent false matches. A domain which once represented 2% of the druggable 

genome is now represented by only a single gene.  

Also, work on different target classes since 2002 could have resulted in better 

annotation of their family and domains, further reducing the estimate size. For example, 

in 2003, Fredriksson et al. identified more than 800 human GPCR sequences and 

analysed 342 unique functional non olfactory human GPCR sequences. Five main 

families, glutamate, rhodopsin, adhesion, frizzled and secretin, were identified 
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(Fredriksson et al., 2003). Similarly, in 2008, the determined crystal structure of GPCR 

opsin was determined, supplying information into GPCR ligand binding and activation 

(Park et al., 2008).  

Proteins which were considered to contain a given domain may have been reconsidered 

due to updates in the InterPro consortium members’ alignment techniques, for example, 

higher family specific inclusion thesholds in Pfam. Additionally 17 of the original 

InterPro domains had been removed, reducing estimate size, or replaced, possibly with a 

narrower domain definition. The features of other domains may have also been 

reclassified, resulting in a more specific signature which would be present in fewer 

genes. 

Improvements to the estimates produced using the Hopkins and Groom technique could 

come from manually updating the existing domains with the advanced knowledge 

available 10 years later. For example, any domains which bind newer drugs which were 

not included in the original list should be included. On the other hand, Pfam domains 

corresponding to these InterPro domains have been shown to produce more 

conservative estimates, therefore obtaining the Russ and Lampel list and making similar 

updates would likely produce an even more conservative druggable estimate than the 

smallest observed in this thesis. Estimates produced using InterPro domains from 

known targets could be improved by only including entries described as active sites or 

binding sites on the InterPro website, and it is possible this filtering process could be 

automated. 

 

5.2 Comparisons to Previous Work 

The number of approved human drug targets has varied between previous work on the 

druggable genome. In 2002, Hopkins and Groom estimated the number of targets at 120 

proteins (Hopkins and Groom, 2002) meaning that the InterPro domains used in 

repeating this analysis have been extracted from 399 rule of five compliant compound 

binding proteins. In contrast, InterPro domains used in the ChEMBL InterPro and 

DrugBank InterPro predictions came from 1,122 and 2,649 proteins and 932 and 2,138 

InterPro domains respectively.  

Even the smaller ChEMBL target set contains over double the number of proteins as the 

original Hopkins and Groom set, explaining why so many more InterPro domains were 

identified (932 versus 144). Also the Hopkins and Groom set only contains druggable 

domains from targets, not all associated InterPro domains. Additionally, not all InterPro 

domains from the Hopkins and Groom set were from approved drug targets, explaining 

why there was not complete consensus observed between the two sets. The identified 

DrugBank targets contained 2,138 InterPro domains compared to the total of 6,816 
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identified in the human protein coding genome explaining how so much of the human 

genome was predicted as druggable. As InterPro predicts the occurrence of functional 

domains, repeats and important sites, not all domains represent an active site. 

Estimates of the number of approved drug targets had doubled by 2006, with Imming et 

al. identifying 218 and Overington et al. finding 266 (Imming et al., 2006, Overington 

et al., 2006). Through manual curation of the DrugBank database in 2011, Rask-

Andersen et al. identified 435 therapeutically relevant human protein targets. Ensembl 

genes and proteins associated with UniProt identifiers of targets in ChEMBL with 

significant activity with a phase four drug gave 1,122 target proteins (763 genes). This 

is more than expected when compared to previous work (which identified between 218 

and 435 targets), which could indicate either more proteins assayed against phase four 

drugs show activity than expected or that the significance cut-off used may have been 

too low.  

Similarly, DrugBank listed 2,649 proteins (1,870 genes) as the target of an approved 

drug. As nontherapeutic targets were not removed, this could explain the higher number 

of targets provided, as Rask-Andersen et al. manually removed over half of targets from 

DrugBank using current medical literature (Rask-Andersen et al., 2011). Therefore, the 

targets of nutritional supplements like tetrahydrofolic acid would be removed. 

Additional annotation in the DrugBank database to allow identification of therapeutic 

drugs would help to overcome this issue, or perhaps another database such as 

Therapeutic Target Database would be a better choice for this purpose. 
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A comparison of druggable genome estimates produced using various techniques is 

shown in Figure 5.1 in the context of the perceived genomic space. The ChEMBL Pfam 

estimate is shown to predict 23.8% of genes, over predicting compared to Russ and 

Lampel’s methods by around 14%. Generally estimates have reduced over time to 

reflect the corresponding reduction in protein coding genes. 

 
Figure 5.1: Comparing the predicted druggable genome against the perceived human genome, using 

extracted ChEMBL Pfam domains as the Brothwood estimate. 

In line with the work by Russ and Lampel in 2005 using Pfam domains equivalent to 

the InterPro domains identified by Hopkins and Groom, enzymes are the largest target 

class, with kinases the largest class within this. The class “cytosolic other” which 

includes Bcl-2 and nuclear factors, has now become a major class not considered by the 

Russ paper. Rhodopsin-like GPCRs remain a major target class, though the target 

prediction here captured 492 sensory receptors compared to ~400 from Russ, though 

this may just be due to the larger prediction. 

However, the known 118 proteins (79 genes) biotechnology targets from ChEMBL is 

much closer to the 76 identified by Overington et al. in 2006, suggesting this dataset has 

a different definition of a biologic than the 1,665 proteins (1,171 genes) returned from 

DrugBank. The ChEMBL query appears to only return targets of monoclonal 

antibodies, whereas the DrugBank query returns the targets of other biological 

therapeutics such as the recombinant human erythropoietin epoetin alfa. This treatment 

for anaemia increases haemoglobin by stimulating erythropoiesis (Littlewood et al., 

2001). It also returns nontherapeutic biologics which have approved use for other 

purposes, such as secretin which is used to diagnose exocrine pancreatic function and 

targets the secretin receptor (Conwell et al., 2003). 
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5.3 Successfully Predicted Examples 

All seven druggable genome prediction methods predicted muscarinic acetylcholine 

receptor M3 (UniProt identifier: P20309), a type 1 GPCR encoded by the human gene 

CHRM3, as chemically tractable. On the 23
rd

 of July 2012 the FDA approved the rule of 

five compliant compound aclidinum bromide (Tudorza Pressair) as long term treatment 

of chronic obstructive pulmonary disease. Inhibition of this receptor decreases 

intracellular calcium levels and causes smooth muscle relaxation in the walls of the 

bronchioles, leading to bronchodilation (Kruse et al., 2012). Since the Hopkins and 

Groom InterPro domains were published in 2002, but have been used to predict a target 

approved in 2012, the use of protein domain druggability prediction techniques appears 

justified.  

Similarly, all seven methods predicted another GPCR, β3-adrenergic receptor (UniProt 

identifier: P13945) as a possible drug target. A novel, first-in-class agonist, mirabegron 

(Myrbetriq) was approved for the treatment of overactive bladder on the 28
th

 of June 

2012. It increases bladder capacity by relaxing the detrusor smooth muscle (Tyagi and 

Tyagi, 2010) in a mechanism similar to aclidinum bromide, showing that all seven 

prediction methods have the potential to predict novel, previously unexploited drug 

targets, particularly of the GPCR class. 

Another target of a first-in-class drug, Ivacaftor (Kalydeco), was predicted, once again, 

by all seven methods. It was approved as a treatment for of a rare form of cystic fibrosis 

on the 31
st
 of January, 2012. The target, CFTR protein (UniProt identifier: P13569), is 

an ABC-class chloride-ion transporter (Yu et al., 2012) proving that all seven druggable 

prediction methods are capable of successfully predicting new drug targets of different 

classes, not just novel GPCRs. These three examples show the developed pipeline is 

able to predict some of the most recently approved drug targets. 

  



72 

 

Although the biopharmable genome predictions did miss a high percentage of known 

targets, some novel targets were successfully identified. Epidermal Growth Factor 

Receptor 2 (ERBB2, Uniprot identifier: P04626) is a cell membrane receptor over 

expressed in breast cancer, shown in Figure 5.2. It was identified by all four 

biopharmable prediction methods and is associated with the GO term indicating a 

basolateral plasma membrane location, supported by evidence from a direct assay, and 

scored an overall biopharmable rank of five out of six. ERBB2 is targeted by the 

monoclonal antibodies Pertuzumab (recently approved by the FDA on the 8
th

 of June 

2012) and Trastuzumab in the treatment of treatment of late stage metastatic breast 

cancer (Cho et al., 2003). 

 
Figure 5.2: Binding of approved monoclonal antibodies (Pertuzumab and Trastuzumab) to 

identified therapeutic breast cancer target Epidermal Growth Factor Receptor 2. 

Image from PDB (Berman et al., 2000, PDB:1n8z) 

Another recently approved biologic, Ipilimumab (Yervoy), was approved for the 

treatment of malignant melanoma on the 25
th

 of March 2011. Its target, cytotoxic T 

lymphocyte antigen 4 (CTLA-4, UniProt identifier: P16410), was predicted by all four 

biopharmable prediction methods. CTLA-4 naturally restricts the antitumour immune 

response so binding a monoclonal antibody to it helps to overcome CTLA-4–mediated 

T-cell suppression (Weber, 2007). These examples show the biopharmable prediction 

methods are capable of predicting some of the most recently approved biotechnology 

targets. 

 

ERBB2 

Herceptin (Trastuzumab) 

Perjeta (Pertuzumab) 
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5.4 Caveats  

One of the main caveats to the approach of capturing every InterPro or Pfam domain 

from each known druggable target is domains will be captured which do not bind the 

drug, resulting in false positives which do not contain the drug binding domain, 

illustrated in Figure 5.3. 

 
Figure 5.3: An example target protein containing two domains, one which is drug binding (green) 

and one which does not bind a drug (red). Proteins predicted which contain only the red domain 

will be false negatives with no indication of drug binding function. 

The use of InterPro domains resulted in a far larger number of druggable target 

predictions than Pfam domains as InterPro has broader domain definitions and, 

therefore, coverage. Since each single InterPro entry unifies signatures from at least one 

of its member databases, for example it could bring together domains from Pfam, 

PRINTS, PROSITE, SMART, ProDom, PIRSF, SUPERFAMILY, PANTHER, CATH-

Gene3D, TIGRFAMs and HAMAP. Since each source has its own methodology of 

signature production (Consortium et al., 2002, Hunter et al., 2012) each InterPro 

definition will be present in more proteins than each Pfam domain. Pfam families are 

identified from constructing a hidden Markov model using multiple sequence 

alignments and searching this against the UniProtKB sequence database, including only 

sequence regions which score above a family-specific cut off value (Punta et al., 2012). 

This highly curated, conserved domain approach differs from classifications by 

ProDom, which involves automated clustering of protein segments using PSI-BLAST 

(Servant et al., 2002). False negatives could have occurred either because an approved 

target did not have an associated InterPro or Pfam domain or this domain was not linked 

to or returned by the Ensembl BioMart query. 
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PDB was used in an attempt to reduce the number of domains which are not directly 

involved in drug binding domains used in the druggable predictions. All domains from 

within an approved drug target were tested to see whether there is any experimental 

evidence of binding, and therefore, the ability to bind the drug. However, if the structure 

has not been determined and listed in PDB the domain will be excluded. The caveats of 

this approach are detailed in Figure 5.4, though this does reduce the number of false 

positives by removing 77 Pfam domains derived from ChEMBL targets (137 less genes 

predicted) and 208 Pfam domains from DrugBank targets (292 less genes predicted). 

 
Figure 5.4: By filtering to include only Pfam domains with a known ligand in PDB, domains with no 

determined structure and domains with no known ligand will be excluded. 

Druggable domains with no determined structure will result in false negatives, domains with a ligand 

which is not a drug will produce false positives (although it can be argued this are likely to be druggable) 

and if a structure has a ligand which has not been determined this will result in a false negative. TP, true 

positive; FP, false positive; TN, true negative; and FN, false negative. 

Additionally, not all domains appear to be captured. The 42 InterPro domains provided 

in the Hopkins and Groom set which were not observed in DrugBank targets mostly 

consisted of domains which do not appear to targeted by an approved drug, such as the 

Serpin protein domain family (protease inhibitors). Some others do appear to be 

druggable, such as the catalytic domain of 3'5'-cyclic nucleotide phosphodiesterase.  

The first group could be due to misclassification of the binding domain by Hopkins and 

Groom or a change in domain definition by InterPro, as observed when B30.2/SPRY 

domain was falsely matched against a provided γ-carboxylase domain (IPR001870). 

The second group likely indicates either that the target is not listed DrugBank, a failure 

to capture all target UniProt identifiers from the DrugBank database or of BioMart to 

return all InterPro domains within each result. 

Additionally, there are 30 genes identified by the Hopkins and Groom method not 

identified by any other. These include plasma alpha-l-fucosidase from the InterPro 

domain for glycoside hydrolase family 29. Similarly, electroneutral sodium bicarbonate 

exchanger is returned from the sodium bicarbonate transporter domain. These domains 

show evidence of binding a rule of five compliant compound, but do not appear to be 

found in an ChEMBL phase four or DrugBank approved target, showing they may only 

bind an experimental compound. 
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5.5 Future Work 

An advised improvement for the future would to programmatically work with protein 

identifiers, rather than their encoding gene identifiers, since these are often the actual 

drug targets. Instead of using Ensembl gene identifies, working with the Ensembl 

protein identifiers or using the UniProt BioMart and UniProt identifiers as the primary 

reference would make aligning data with ChEMBL and DrugBank data much easier. In 

addition, by using UniProt accessions problems experienced due to inconsistent linking 

between of Ensembl identifiers to UniProt identifiers would be alleviated. Since the 

actual target protein would be identified directly, this provides a clearly starting point 

for disease linking, for example using genome-wide association studies (GWAS) and 

assaying against potential drugs in pharmaceutical companies. Importantly, it would 

still be possible to draw comparisons against previous work since it is possible to obtain 

gene identifiers from the protein identifiers and it is a safer assumption that one protein 

is coded by one gene than that one gene codes one protein, which is not always the case.  

Expansion to include rule of five compliant compound binding sites or to include data 

from other databases could also reveal more useful information. The BindingDB (Liu et 

al., 2007) is a highly curated database including binding affinity data for small 

molecules to proteins, focussing on quantitative data (such as Ki, Kd and IC50 

measurements). It contains 5,583 protein targets compared to the 8,900 protein targets 

recorded in ChEMBL. Other databases include PubChem (Wang et al., 2012), 

containing data from ChEMBL and BindingDB amongst other sources, and Therapeutic 

Target Database (Zhu et al., 2012), housing 2,085 (364 successful) fully referenced drug 

targets, with additional relevant information such as protein function, sequence, 3D 

structure, therapeutic class and ligand binding properties (Nicola et al., 2012).  

Using only data from the binding assays in ChEMBL rather than all assays, which 

include functional assays, could improve known target data quality. This is important 

since the number of known targets with significant activity appeared high compared to 

previous work. Additionally the activity level at which a target is considered significant 

could be adjusted higher, however this would exclude some targets of promiscuous 

drugs which may be therapeutically relevant but only display low levels of activity. 

Additionally, the use of proprietary in house data from pharmaceutical companies 

would improve the quality of drug-target assay data and, therefore, the extrapolated 

predictions. OpenPHACTS could build upon the information provided by this thesis, 

incorporating information from other companies and sources to create a consensus of 

various predictions to create one, higher confidence list. 

The use of homology would also be an interesting future step. Identifying proteins with 

significantly similar sequences to known targets may provide a better estimate, as would 

the use of druggable domains sequences from ChEMBL’s DrugEBIlity database. 

Homology searches could be adjusted to create very conservative estimates, with only 
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targets very similar to the known examples or broader estimates allowing some less 

similar proteins to be predicted. 

Identification of targets based on structural information would give a high confidence 

estimate, ensuring that not only is a binding domain present, it is correctly folded and in 

an accessible location on the protein. However, many drug targets are difficult to 

crystallise, for example those which are membrane bound rather than globular, and 

therefore do not have determined structures. But as the Structural Genomics Consortium 

(SGC) and other groups continue to determine proteins structures, the PDB could be 

provide an even more useful resource in the future. FTMAP, which identifies protein 

sites with high binding affinity, may also prove a useful tool for structural based 

prediction methods (Brenke 2009). 

For biopharmable predictions, it is advisable to evaluate potential targets on their 

involvement in disease, for example through literature searches for strong or weak 

associations, using Disease Ontology (DO) terms or databases such as Online 

Mendelian Inheritance in Man (OMIM) or GWAS. The DO provides well-defined, 

standardised terms for genetic, environmental and infectious diseases so any gene 

associated to a DO term may be potentially of interest (Schriml et al., 2011). OMIM 

focuses on genetic disorders, containing over 12,000 genes and their association to a 

specific phenotype (OMIM, 2012) whereas GWAS focuses on the analysis of genetic 

differences between healthy individuals and those with specific illnesses, with 

information contained within the database of genotype and phenotype (dbGaP). 

The use of other signal peptide predictors (such as SignalCF or TatP), secretome 

predictors (such as SecretomeP), transmembrane predictors (for example, HMMTOP, 

DAS or SOSUI) and subcellular location predictors (such as TargetP) should be 

explored. 

Additional filtering of all produced datasets to remove targets known to be toxic, or 

those which are unlikely to be suitable targets, would also improve prediction quality. 

Targets known to cause a harmful effect when targeted can be obtained from databases 

such as the Toxin Toxin-Target Database (Lim et al., 2010) or SuperToxic (Schmidt et 

al., 2009) and, if any of these targets are predicted, they could be flagged as toxic or 

removed from the prediction entirely. 

Replication of the existing prediction methods in model organisms or pathogens, 

through querying a different Ensembl genome, could provide potentially useful target 

information. The replication in model organisms would ensure any developed drug 

could be tested effectively and easily. Identified pathogen targets could also be tested 

through to ensure no close homologues existing in humans.  
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6 Conclusion  

An automated pipeline was created to generate both a druggable and a biopharmable 

genome. The pipeline lends itself to be updated as new knowledge emerges, for 

example new druggable protein domains. This has already been used by 

GlaxoSmithKline and has created great interest in the IMI Openphacts project. 

In conclusion, the biopharmable genome is very difficult to accurately predict. 

Characteristics which make a protein druggable are more clearly defined (there must be 

a pocket able to bind a compound like molecule) whereas those which allow a target to 

be modulated by biotechnology are more poorly characterised. The known 

characteristics, such as accessibility, are hard to predict as multiple secretion pathways 

exist and not every protein with a transmembrane region is exposed on the cell surface. 

None of the prediction models managed to capture a high percentage of the known 

targets even though the biotechnology targets provided by ChEMBL appear to be 

almost exclusively receptors. Although the target class predictions were not fully 

implemented for the biopharmable classes, receptors and ion channels appear to make 

up the majority of the results, implying the GO terms for plasma membrane and 

TMHMM methods are successfully predicting potential targets. 

Estimates of the druggable genome have been more successful, capturing a much higher 

percentage of the known targets. As expected, the Hopkins and Groom InterPro 

domains produced an estimate in line with previous estimates, at of 2,779 genes and 

other predictions were at around 3,000 druggable genes. The use of every InterPro 

domain from known targets should be considered too broad, as over predicting to the 

point of including the majority of the genome is not a accurate estimate.  

Therefore, to create a broad estimate which is still within reasonable boundaries, the 

Pfam domains with a confirmed ligand in PDB could be used. This estimate was greater 

than previously predicted estimates, at 4,960 genes, but missed far fewer known targets 

that the Hopkins and Groom InterPro domains. Since these methods cannot take into 

account the discovery of first in class targets, the actual size of the druggable genome is 

likely to be somewhere in between these two estimates at around 3,000-5,000 genes. 

The fully automated pipeline developed as part of this thesis using open source and 

publicly accessible data is available for update and modification for any required future 

work.  
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8 Appendix 

8.1 Pipeline 

Please see the uploaded ZIP file for all scripts needed to run this analysis, in the 

directory ‘scripts’ and subdirectory ‘tools’. To edit the automated running of the 

pipeline please see ‘scripts/pipeline.pl’. The data used within this thesis is included 

alongside a distribution ready folder containing only the required inputs and scripts 

except the required drugbank database saved as ‘inputs/raw/drugbank_xml.xml’ and 

‘inputs/raw/drugbank_target_links.csv’ to be downloaded from 

http://www.drugbank.ca/downloads (described as ‘All Drugs, including target, 

transporter, carrier, and enzyme information’ and ‘Links to external databases and 

external identifiers for drug targets’ respectively). Additionally, ChEMBL database 

access information, such as username and password, must be completed in 

‘scripts/tools/chembl_query_all.pl’ and 

‘scripts/tools/chembl_query_confident_smallmol.pl’, however sample data from 

ChEMBL 13 is supplied. 

8.2 Druggable genome list 

Please see the attached ZIP file ‘outputs/smallmol/all_smallmol_predictions.txt’ for a 

complete tab delimited list of all genes/proteins predicted as druggable. Per new line the 

file includes: Ensembl gene ID, Uniprot ID, Entrez ID, HGNC symbol, Predicted target 

class, Predicted target subclass, Chembl TID, Chembl class, Chembl subclass(es), 

Approved in and Prediction method(s). 

8.3 Biopharmable genome list 

Please see the attached ZIP file ‘outputs/biotech/all_biotech_predictions.txt’ for a 

complete tab delimited list of all genes/proteins predicted as biopharmable. Per new line 

the file includes: Ensembl gene ID, Uniprot ID, Entrez ID, HGNC symbol, Predicted 

target class, Predicted target subclass, Chembl TID, Chembl class, Chembl subclass(es), 

Approved in and Prediction method(s). 

  

http://www.drugbank.ca/downloads
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8.4 Updated Hopkins and Groom InterPro domains list 

InterPro Domains 

IPR002290 IPR004709 IPR001054 IPR000811 

IPR000276 IPR001431 IPR001148 IPR001170 

IPR001245 IPR001604 IPR001179 IPR001273 

IPR005821 IPR000322 IPR001192 IPR001424 

IPR001254 IPR000907 IPR002018 IPR006131 

IPR000387 IPR001124 IPR002085 IPR006132 

IPR006026 IPR001429 IPR000834 IPR006130 

IPR000832 IPR000889 IPR001395 IPR006620 

IPR001128 IPR001129 IPR000337 IPR013547 

IPR000536 IPR001241 IPR000917 IPR004307 

IPR007782 IPR002937 IPR000300 IPR000183 

IPR002198 IPR000022 IPR000734 IPR000590 

IPR001140 IPR000602 IPR001327 IPR000903 

IPR022642 IPR005815 IPR001807 IPR000933 

IPR006202 IPR005814 IPR002398 IPR001295 

IPR000215 IPR001365 IPR006068 IPR001369 

IPR006201 IPR006172 IPR004014 IPR001514 

IPR013766 IPR006134 IPR006069 IPR001747 

IPR002073 IPR006133 IPR001433 IPR001796 

IPR002181 IPR002173 IPR001873 IPR002088 

IPR000477 IPR000043 IPR004841 IPR000312 

IPR001190 IPR020830 IPR004840 IPR000398 

IPR001763 IPR020828 IPR000451 IPR000788 

IPR001876 IPR020829 IPR000836 IPR001267 

IPR003594 IPR000643 IPR001412 IPR001631 

IPR000712 IPR003042 IPR001969 IPR001866 

IPR000175 IPR001093 IPR003024 IPR001985 

IPR000217 IPR012317 IPR001102 IPR002060 

IPR000403 IPR001330 IPR001211 IPR002202 

IPR000413 IPR002205 IPR001375 IPR002365 

IPR000169 IPR002516 IPR002007 IPR002755 

IPR001320 IPR002657 IPR002117 IPR002948 

IPR015590 IPR000146 IPR000542 IPR000489 

IPR011264 IPR000323 IPR000994 IPR000531 

IPR002113 IPR000572 IPR002129 IPR000821 

IPR006153 IPR002089 IPR002369 IPR001847 
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8.5 GO terms ranked by accessibility 

GO Term GO Term Name Confidence Biopharmable 

GO:0016020 membrane low 

GO:0016021 integral to membrane low 

GO:0005789 endoplasmic reticulum membrane no 

GO:0005743 mitochondrial inner membrane no 

GO:0005886 plasma membrane medium 

GO:0032587 ruffle membrane medium 

GO:0005615 extracellular space high 

GO:0005576 extracellular region high 

GO:0016324 apical plasma membrane medium 

GO:0031205 endoplasmic reticulum Sec complex no 

GO:0016323 basolateral plasma membrane medium 

GO:0030659 cytoplasmic vesicle membrane low 

GO:0031901 early endosome membrane no 

GO:0034707 chloride channel complex medium 

GO:0005741 mitochondrial outer membrane no 

GO:0005887 integral to plasma membrane low 

GO:0005923 tight junction medium 

GO:0005578 proteinaceous extracellular matrix high 

GO:0005643 nuclear pore no 

GO:0005925 focal adhesion high 

GO:0005765 lysosomal membrane no 

GO:0000139 Golgi membrane no 

GO:0030667 secretory granule membrane high 

GO:0030658 transport vesicle membrane low 

GO:0030672 synaptic vesicle membrane low 

GO:0031315 extrinsic to mitochondrial outer membrane no 

GO:0005747 mitochondrial respiratory chain complex I no 

GO:0031966 mitochondrial membrane no 

GO:0070469 respiratory chain no 

GO:0030126 COPI vesicle coat no 

GO:0045121 membrane raft medium 

GO:0034364 high-density lipoprotein particle high 

GO:0034366 spherical high-density lipoprotein particle high 

GO:0001772 immunological synapse high 

GO:0008305 integrin complex high 

GO:0009897 external side of plasma membrane high 

GO:0031088 platelet dense granule membrane high 

GO:0010008 endosome membrane no 

GO:0030670 phagocytic vesicle membrane no 

GO:0031092 platelet alpha granule membrane high 

GO:0042383 sarcolemma medium 
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GO:0030121 AP-1 adaptor complex low 

GO:0030130 clathrin coat of trans-Golgi network vesicle low 

GO:0030666 endocytic vesicle membrane no 

GO:0032281 alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 

selective glutamate receptor complex 

high 

GO:0005891 voltage-gated calcium channel complex high 

GO:0005905 coated pit high 

GO:0030117 membrane coat medium 

GO:0030131 clathrin adaptor complex low 

GO:0019898 extrinsic to membrane low 

GO:0030897 HOPS complex no 

GO:0031225 anchored to membrane low 

GO:0042622 photoreceptor outer segment membrane medium 

GO:0031528 microvillus membrane high 

GO:0031965 nuclear membrane no 

GO:0019815 B cell receptor complex high 

GO:0001518 voltage-gated sodium channel complex high 

GO:0005901 caveola high 

GO:0031227 intrinsic to endoplasmic reticulum membrane no 

GO:0043020 NADPH oxidase complex low 

GO:0071438 invadopodium membrane high 

GO:0005778 peroxisomal membrane no 

GO:0030173 integral to Golgi membrane no 

GO:0032580 Golgi cisterna membrane no 

GO:0031012 extracellular matrix high 

GO:0005746 mitochondrial respiratory chain no 

GO:0005750 mitochondrial respiratory chain complex III no 

GO:0031902 late endosome membrane no 

GO:0042101 T cell receptor complex high 

GO:0042612 MHC class I protein complex high 

GO:0005589 collagen type VI high 

GO:0045211 postsynaptic membrane medium 

GO:0055038 recycling endosome membrane low 

GO:0012506 vesicle membrane low 

GO:0032592 integral to mitochondrial membrane no 

GO:0005637 nuclear inner membrane no 

GO:0042589 zymogen granule membrane high 

GO:0016942 insulin-like growth factor binding protein complex high 

GO:0070821 tertiary granule membrane high 

GO:0009279 cell outer membrane high 

GO:0005890 sodium:potassium-exchanging ATPase complex high 

GO:0005581 collagen high 

GO:0042613 MHC class II protein complex medium 

GO:0005579 membrane attack complex high 

GO:0032311 angiogenin-PRI complex high 
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GO:0034045 pre-autophagosomal structure membrane no 

GO:0031264 death-inducing signaling complex high 

GO:0031265 CD95 death-inducing signaling complex high 

GO:0008076 voltage-gated potassium channel complex high 

GO:0031080 Nup107-160 complex no 

GO:0046930 pore complex low 

GO:0031307 integral to mitochondrial outer membrane no 

GO:0043190 ATP-binding cassette (ABC) transporter complex low 

GO:0033177 proton-transporting two-sector ATPase complex, proton-

transporting domain 

low 

GO:0005779 integral to peroxisomal membrane no 

GO:0000421 autophagic vacuole membrane low 

GO:0030055 cell-substrate junction high 

GO:0005604 basement membrane high 

GO:0070083 clathrin sculpted monoamine transport vesicle membrane no 

GO:0034362 low-density lipoprotein particle high 

GO:0009898 internal side of plasma membrane no 

GO:0016328 lateral plasma membrane high 

GO:0016342 catenin complex no 

GO:0043296 apical junction complex high 

GO:0032585 multivesicular body membrane no 

GO:0005614 interstitial matrix high 

GO:0005640 nuclear outer membrane no 

GO:0030122 AP-2 adaptor complex medium 

GO:0060171 stereocilium membrane high 

GO:0005915 zonula adherens high 

GO:0030176 integral to endoplasmic reticulum membrane no 

GO:0000221 vacuolar proton-transporting V-type ATPase, V1 domain no 

GO:0033162 melanosome membrane no 

GO:0005594 collagen type IX high 

GO:0030665 clathrin coated vesicle membrane low 

GO:0031201 SNARE complex medium 

GO:0005606 laminin-1 complex high 

GO:0005610 laminin-5 complex high 

GO:0005605 basal lamina high 

GO:0031258 lamellipodium membrane high 

GO:0031527 filopodium membrane high 

GO:0033017 sarcoplasmic reticulum membrane no 

GO:0005607 laminin-2 complex high 

GO:0005834 heterotrimeric G-protein complex no 

GO:0031234 extrinsic to internal side of plasma membrane no 

GO:0005592 collagen type XI high 

GO:0033116 endoplasmic reticulum-Golgi intermediate compartment 

membrane 

no 

GO:0042734 presynaptic membrane medium 

GO:0030118 clathrin coat no 
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GO:0030056 hemidesmosome high 

GO:0031526 brush border membrane medium 

GO:0030663 COPI coated vesicle membrane no 

GO:0030315 T-tubule low 

GO:0060201 clathrin sculpted acetylcholine transport vesicle membrane low 

GO:0060203 clathrin sculpted glutamate transport vesicle membrane low 

GO:0061202 clathrin sculpted gamma-aminobutyric acid transport vesicle 

membrane 

low 

GO:0042584 chromaffin granule membrane low 

GO:0008282 ATP-sensitive potassium channel complex high 

GO:0034673 inhibin-betaglycan-ActRII complex medium 

GO:0016327 apicolateral plasma membrane medium 

GO:0031235 intrinsic to internal side of plasma membrane no 

GO:0030132 clathrin coat of coated pit medium 

GO:0070772 PAS complex no 

GO:0030119 AP-type membrane coat adaptor complex no 

GO:0017071 intracellular cyclic nucleotide activated cation channel complex no 

GO:0016469 proton-transporting two-sector ATPase complex low 

GO:0005774 vacuolar membrane no 

GO:0033180 proton-transporting V-type ATPase, V1 domain low 

GO:0030128 clathrin coat of endocytic vesicle no 

GO:0070062 extracellular vesicular exosome high 

GO:0012507 ER to Golgi transport vesicle membrane no 

GO:0034704 calcium channel complex high 

GO:0060170 cilium membrane medium 

GO:0031095 platelet dense tubular network membrane no 

GO:0005749 mitochondrial respiratory chain complex II no 

GO:0019867 outer membrane no 

GO:0005889 hydrogen:potassium-exchanging ATPase complex high 

GO:0097025 MPP7-DLG1-LIN7 complex high 

GO:0031253 cell projection membrane medium 

GO:0045092 interleukin-18 receptor complex high 

GO:0045323 interleukin-1 receptor complex high 

GO:0043205 fibril high 

GO:0005588 collagen type V high 

GO:0005892 acetylcholine-gated channel complex high 

GO:0070765 gamma-secretase complex low 

GO:0005587 collagen type IV high 

GO:0035631 CD40 receptor complex high 

GO:0005642 annulate lamellae no 

GO:0030867 rough endoplasmic reticulum membrane no 

GO:0009925 basal plasma membrane medium 

GO:0031314 extrinsic to mitochondrial inner membrane no 

GO:0005597 collagen type XVI high 

GO:0030669 clathrin-coated endocytic vesicle membrane no 
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GO:0034359 mature chylomicron high 

GO:0034360 chylomicron remnant high 

GO:0034361 very-low-density lipoprotein particle high 

GO:0034363 intermediate-density lipoprotein particle high 

GO:0042627 chylomicron high 

GO:0031362 anchored to external side of plasma membrane high 

GO:0031313 extrinsic to endosome membrane no 

GO:0043083 synaptic cleft high 

GO:0005757 mitochondrial permeability transition pore complex no 

GO:0042765 GPI-anchor transamidase complex no 

GO:0031305 integral to mitochondrial inner membrane no 

GO:0031224 intrinsic to membrane low 

GO:0032588 trans-Golgi network membrane no 

GO:0001891 phagocytic cup no 

GO:0005639 integral to nuclear inner membrane no 

GO:0030125 clathrin vesicle coat no 

GO:0017059 serine C-palmitoyltransferase complex no 

GO:0035339 SPOTS complex no 

GO:0031233 intrinsic to external side of plasma membrane high 

GO:0043257 laminin-8 complex high 

GO:0043259 laminin-10 complex high 

GO:0043256 laminin complex high 

GO:0034676 alpha6-beta4 integrin complex high 

GO:0005927 muscle tendon junction medium 

GO:0014701 junctional sarcoplasmic reticulum membrane no 

GO:0031301 integral to organelle membrane no 

GO:0005899 insulin receptor complex high 

GO:0005924 cell-substrate adherens junction high 

GO:0042022 interleukin-12 receptor complex high 

GO:0072536 interleukin-23 receptor complex high 

GO:0005753 mitochondrial proton-transporting ATP synthase complex no 

GO:0000275 mitochondrial proton-transporting ATP synthase complex, 

catalytic core F(1) 

no 

GO:0045261 proton-transporting ATP synthase complex, catalytic core F(1) low 

GO:0044420 extracellular matrix part high 

GO:0042567 insulin-like growth factor ternary complex high 

GO:0005900 oncostatin-M receptor complex high 

GO:0005742 mitochondrial outer membrane translocase complex no 

GO:0001401 mitochondrial sorting and assembly machinery complex no 

GO:0030526 granulocyte macrophage colony-stimulating factor receptor 

complex 

high 

GO:0016471 vacuolar proton-transporting V-type ATPase complex no 

GO:0033178 proton-transporting two-sector ATPase complex, catalytic 

domain 

low 

GO:0030127 COPII vesicle coat no 

GO:0030868 smooth endoplasmic reticulum membrane no 
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GO:0030660 Golgi-associated vesicle membrane no 

GO:0031090 organelle membrane no 

GO:0005608 laminin-3 complex high 

GO:0030285 integral to synaptic vesicle membrane low 

GO:0008250 oligosaccharyltransferase complex no 

GO:0019897 extrinsic to plasma membrane medium 

GO:0016012 sarcoglycan complex high 

GO:0044459 plasma membrane part medium 

GO:0046691 intracellular canaliculus medium 

GO:0032589 neuron projection membrane medium 

GO:0005577 fibrinogen complex high 

GO:0005744 mitochondrial inner membrane presequence translocase 

complex 

no 

GO:0070044 synaptobrevin 2-SNAP-25-syntaxin-1a complex medium 

GO:0017146 N-methyl-D-aspartate selective glutamate receptor complex high 

GO:0008328 ionotropic glutamate receptor complex high 

GO:0032983 kainate selective glutamate receptor complex high 

GO:0002080 acrosomal membrane no 

GO:0070032 synaptobrevin 2-SNAP-25-syntaxin-1a-complexin I complex medium 

GO:0030904 retromer complex no 

GO:0072534 perineuronal net high 

GO:0070022 transforming growth factor beta receptor complex high 

GO:0072563 endothelial microparticle high 

GO:0031232 extrinsic to external side of plasma membrane high 

GO:0033165 interphotoreceptor matrix high 

GO:0031240 external side of cell outer membrane high 

GO:0005584 collagen type I high 

GO:0016010 dystrophin-associated glycoprotein complex high 

GO:0071986 Ragulator complex no 

GO:0016600 flotillin complex no 

GO:0032584 growth cone membrane medium 

GO:0030673 axolemma medium 

GO:0044214 fully spanning plasma membrane high 

GO:0070743 interleukin-23 complex high 

GO:0005754 mitochondrial proton-transporting ATP synthase, catalytic core no 

GO:0034706 sodium channel complex high 

GO:0042105 alpha-beta T cell receptor complex high 

GO:0045171 intercellular bridge no 

GO:0005751 mitochondrial respiratory chain complex IV no 

GO:0005595 collagen type XII high 

GO:0046658 anchored to plasma membrane medium 

GO:0042825 TAP complex no 

GO:0071556 integral to lumenal side of endoplasmic reticulum membrane no 

GO:0042824 MHC class I peptide loading complex no 

GO:0017090 meprin A complex no 
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GO:0034098 Cdc48p-Npl4p-Ufd1p AAA ATPase complex no 

GO:0043514 interleukin-12 complex high 

GO:0031226 intrinsic to plasma membrane medium 

GO:0033179 proton-transporting V-type ATPase, V0 domain low 

GO:0005590 collagen type VII high 

GO:0005784 Sec61 translocon complex no 

GO:0005787 signal peptidase complex no 

GO:0048179 activin receptor complex high 

GO:0071439 clathrin complex no 

GO:0032590 dendrite membrane medium 

GO:0000276 mitochondrial proton-transporting ATP synthase complex, 

coupling factor F(o) 

no 

GO:0031306 intrinsic to mitochondrial outer membrane no 

GO:0001527 microfibril high 

GO:0031302 intrinsic to endosome membrane no 

GO:0002079 inner acrosomal membrane no 

GO:0044421 extracellular region part high 

GO:0042175 nuclear outer membrane-endoplasmic reticulum membrane 

network 

no 

GO:0002081 outer acrosomal membrane no 

GO:0030061 mitochondrial crista no 

GO:0005922 connexon complex high 

GO:0034358 plasma lipoprotein particle high 

GO:0043509 activin A complex high 

GO:0043512 inhibin A complex high 

GO:0045263 proton-transporting ATP synthase complex, coupling factor 

F(o) 

low 

GO:0032937 SREBP-SCAP-Insig complex no 

GO:0097060 synaptic membrane medium 

GO:0032809 neuronal cell body membrane medium 

GO:0043260 laminin-11 complex high 

GO:0005898 interleukin-13 receptor complex high 

GO:0000815 ESCRT III complex no 

GO:0031260 pseudopodium membrane medium 

GO:0005896 interleukin-6 receptor complex high 

GO:0070110 ciliary neurotrophic factor receptor complex high 

GO:0000836 Hrd1p ubiquitin ligase complex no 

GO:0031228 intrinsic to Golgi membrane no 

GO:0046696 lipopolysaccharide receptor complex high 

GO:0035354 Toll-like receptor 1-Toll-like receptor 2 protein complex high 

GO:0035355 Toll-like receptor 2-Toll-like receptor 6 protein complex high 

GO:0005895 interleukin-5 receptor complex high 

GO:0005583 fibrillar collagen high 

GO:0005585 collagen type II high 

GO:0071953 elastic fiber high 

GO:0042406 extrinsic to endoplasmic reticulum membrane no 
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GO:0031256 leading edge membrane medium 

GO:0031304 intrinsic to mitochondrial inner membrane no 

GO:0045273 respiratory chain complex II no 

GO:0045281 succinate dehydrogenase complex no 

GO:0045282 plasma membrane succinate dehydrogenase complex medium 

GO:0005785 signal recognition particle receptor complex no 

GO:0034679 alpha9-beta1 integrin complex high 

GO:0005591 collagen type VIII high 

GO:0070435 Shc-EGFR complex high 

GO:0042568 insulin-like growth factor binary complex high 

GO:0016013 syntrophin complex medium 

GO:0044425 membrane part low 

GO:0032998 Fc-epsilon receptor I complex high 

GO:0034667 alpha3-beta1 integrin complex high 

GO:0002095 caveolar macromolecular signaling complex low 

GO:0071133 alpha9-beta1 integrin-ADAM8 complex high 

GO:0072517 host cell viral assembly compartment no 

GO:0020017 flagellar membrane low 

GO:0071914 prominosome high 

GO:0032579 apical lamina of hyaline layer high 

GO:0071062 alphav-beta3 integrin-vitronectin complex high 

GO:0031259 uropod membrane no 

GO:0097197 tetraspanin-enriched microdomain high 

GO:0071065 alpha9-beta1 integrin-vascular cell adhesion molecule-1 

complex 

high 

GO:0060342 photoreceptor inner segment membrane no 

GO:0045271 respiratory chain complex I no 

GO:0005586 collagen type III high 

GO:0034678 alpha8-beta1 integrin complex high 

GO:0035003 subapical complex no 

GO:0005602 complement component C1 complex high 

GO:0016011 dystroglycan complex high 

GO:0032591 dendritic spine membrane medium 

GO:0031309 integral to nuclear outer membrane no 

GO:0032002 interleukin-28 receptor complex high 

GO:0042720 mitochondrial inner membrane peptidase complex no 

GO:0005596 collagen type XIV high 

GO:0032473 external side of mitochondrial outer membrane no 

GO:0005600 collagen type XIII high 

GO:0012510 trans-Golgi network transport vesicle membrane no 

GO:0070702 inner mucus layer medium 

GO:0070703 outer mucus layer high 

GO:0019866 organelle inner membrane no 

GO:0005582 collagen type XV high 

GO:0034365 discoidal high-density lipoprotein particle high 
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GO:0042025 host cell nucleus no 

GO:0020005 symbiont-containing vacuole membrane no 

GO:0020003 symbiont-containing vacuole no 

GO:0034666 alpha2-beta1 integrin complex high 

8.6 GO term evidence codes 

Experimental Evidence Codes: 

EXP: Inferred from Experiment 

IDA: Inferred from Direct Assay 

IPI: Inferred from Physical Interaction 

IMP: Inferred from Mutant Phenotype 

IGI: Inferred from Genetic Interaction 

IEP: Inferred from Expression Pattern 

Computational Analysis Evidence Codes: 

ISS: Inferred from Sequence or Structural Similarity 

ISO: Inferred from Sequence Orthology 

ISA: Inferred from Sequence Alignment 

ISM: Inferred from Sequence Model 

IGC: Inferred from Genomic Context 

IBA: Inferred from Biological aspect of Ancestor 

IBD: Inferred from Biological aspect of Descendant 

IKR: Inferred from Key Residues 

IRD: Inferred from Rapid Divergence 

RCA: inferred from Reviewed Computational Analysis 

Author Statement Evidence Codes: 

TAS: Traceable Author Statement 

NAS: Non-traceable Author Statement 

IC: Inferred by Curator 
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ND: No biological Data available 

Automatically-assigned Evidence Codes: 

IEA: Inferred from Electronic Annotation 

Obsolete Evidence Codes: 

NR: Not Recorded 


